| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem113.f |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | fourierdlem113.t |  |-  T = ( 2 x. _pi ) | 
						
							| 3 |  | fourierdlem113.per |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 4 |  | fourierdlem113.x |  |-  ( ph -> X e. RR ) | 
						
							| 5 |  | fourierdlem113.l |  |-  ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) | 
						
							| 6 |  | fourierdlem113.r |  |-  ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) | 
						
							| 7 |  | fourierdlem113.p |  |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 8 |  | fourierdlem113.m |  |-  ( ph -> M e. NN ) | 
						
							| 9 |  | fourierdlem113.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 10 |  | fourierdlem113.dvcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 11 |  | fourierdlem113.dvlb |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 12 |  | fourierdlem113.dvub |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 13 |  | fourierdlem113.a |  |-  A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 14 |  | fourierdlem113.b |  |-  B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 15 |  | fourierdlem113.15 |  |-  S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 16 |  | fourierdlem113.e |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) | 
						
							| 17 |  | fourierdlem113.exq |  |-  ( ph -> ( E ` X ) e. ran Q ) | 
						
							| 18 |  | oveq1 |  |-  ( w = y -> ( w mod ( 2 x. _pi ) ) = ( y mod ( 2 x. _pi ) ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( w = y -> ( ( w mod ( 2 x. _pi ) ) = 0 <-> ( y mod ( 2 x. _pi ) ) = 0 ) ) | 
						
							| 20 |  | oveq2 |  |-  ( w = y -> ( ( k + ( 1 / 2 ) ) x. w ) = ( ( k + ( 1 / 2 ) ) x. y ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( w = y -> ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) ) | 
						
							| 22 |  | oveq1 |  |-  ( w = y -> ( w / 2 ) = ( y / 2 ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( w = y -> ( sin ` ( w / 2 ) ) = ( sin ` ( y / 2 ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( w = y -> ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) | 
						
							| 25 | 21 24 | oveq12d |  |-  ( w = y -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) = ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) | 
						
							| 26 | 19 25 | ifbieq2d |  |-  ( w = y -> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) | 
						
							| 27 | 26 | cbvmptv |  |-  ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( k = m -> ( 2 x. k ) = ( 2 x. m ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( k = m -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. m ) + 1 ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( k = m -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) ) | 
						
							| 31 |  | oveq1 |  |-  ( k = m -> ( k + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( k = m -> ( ( k + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. y ) ) | 
						
							| 33 | 32 | fveq2d |  |-  ( k = m -> ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( k = m -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) | 
						
							| 35 | 30 34 | ifeq12d |  |-  ( k = m -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) | 
						
							| 36 | 35 | mpteq2dv |  |-  ( k = m -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 37 | 27 36 | eqtrid |  |-  ( k = m -> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 38 | 37 | cbvmptv |  |-  ( k e. NN |-> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) ) = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 39 |  | oveq1 |  |-  ( w = y -> ( w + ( j x. T ) ) = ( y + ( j x. T ) ) ) | 
						
							| 40 | 39 | eleq1d |  |-  ( w = y -> ( ( w + ( j x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) | 
						
							| 41 | 40 | rexbidv |  |-  ( w = y -> ( E. j e. ZZ ( w + ( j x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) | 
						
							| 42 | 41 | cbvrabv |  |-  { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } | 
						
							| 43 | 42 | uneq2i |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) | 
						
							| 44 | 43 | fveq2i |  |-  ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) | 
						
							| 45 | 44 | oveq1i |  |-  ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 46 |  | oveq1 |  |-  ( k = j -> ( k x. T ) = ( j x. T ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( k = j -> ( y + ( k x. T ) ) = ( y + ( j x. T ) ) ) | 
						
							| 48 | 47 | eleq1d |  |-  ( k = j -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) | 
						
							| 49 | 48 | cbvrexvw |  |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) | 
						
							| 50 | 49 | a1i |  |-  ( y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) | 
						
							| 51 | 50 | rabbiia |  |-  { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } | 
						
							| 52 | 51 | uneq2i |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) | 
						
							| 53 |  | isoeq5 |  |-  ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 54 | 52 53 | ax-mp |  |-  ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) | 
						
							| 55 | 54 | a1i |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 56 | 46 | oveq2d |  |-  ( k = j -> ( w + ( k x. T ) ) = ( w + ( j x. T ) ) ) | 
						
							| 57 | 56 | eleq1d |  |-  ( k = j -> ( ( w + ( k x. T ) ) e. ran Q <-> ( w + ( j x. T ) ) e. ran Q ) ) | 
						
							| 58 | 57 | cbvrexvw |  |-  ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) | 
						
							| 59 | 58 | a1i |  |-  ( w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) ) | 
						
							| 60 | 59 | rabbiia |  |-  { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } | 
						
							| 61 | 60 | uneq2i |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) | 
						
							| 62 | 61 | fveq2i |  |-  ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) | 
						
							| 63 | 62 | oveq1i |  |-  ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 64 | 63 | oveq2i |  |-  ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) | 
						
							| 65 |  | isoeq4 |  |-  ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 66 | 64 65 | ax-mp |  |-  ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) | 
						
							| 67 | 66 | a1i |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 68 |  | isoeq1 |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 69 | 55 67 68 | 3bitrd |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 70 | 69 | cbviotavw |  |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) | 
						
							| 71 |  | pire |  |-  _pi e. RR | 
						
							| 72 | 71 | renegcli |  |-  -u _pi e. RR | 
						
							| 73 | 72 | a1i |  |-  ( ph -> -u _pi e. RR ) | 
						
							| 74 | 71 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 75 |  | negpilt0 |  |-  -u _pi < 0 | 
						
							| 76 | 75 | a1i |  |-  ( ph -> -u _pi < 0 ) | 
						
							| 77 |  | pipos |  |-  0 < _pi | 
						
							| 78 | 77 | a1i |  |-  ( ph -> 0 < _pi ) | 
						
							| 79 |  | picn |  |-  _pi e. CC | 
						
							| 80 | 79 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 81 | 79 79 | subnegi |  |-  ( _pi - -u _pi ) = ( _pi + _pi ) | 
						
							| 82 | 80 2 81 | 3eqtr4i |  |-  T = ( _pi - -u _pi ) | 
						
							| 83 | 7 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 84 | 8 83 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 85 | 9 84 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 86 | 85 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 87 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 88 | 86 87 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 89 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 90 |  | rnffi |  |-  ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. Fin ) -> ran Q e. Fin ) | 
						
							| 91 | 88 89 90 | syl2anc |  |-  ( ph -> ran Q e. Fin ) | 
						
							| 92 | 7 8 9 | fourierdlem15 |  |-  ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 93 |  | frn |  |-  ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> ran Q C_ ( -u _pi [,] _pi ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( ph -> ran Q C_ ( -u _pi [,] _pi ) ) | 
						
							| 95 | 85 | simprd |  |-  ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 96 | 95 | simplrd |  |-  ( ph -> ( Q ` M ) = _pi ) | 
						
							| 97 |  | ffun |  |-  ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> Fun Q ) | 
						
							| 98 | 92 97 | syl |  |-  ( ph -> Fun Q ) | 
						
							| 99 | 8 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 100 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 101 | 99 100 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 102 |  | eluzfz2 |  |-  ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) | 
						
							| 103 | 101 102 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 104 |  | fdm |  |-  ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> dom Q = ( 0 ... M ) ) | 
						
							| 105 | 92 104 | syl |  |-  ( ph -> dom Q = ( 0 ... M ) ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ph -> ( 0 ... M ) = dom Q ) | 
						
							| 107 | 103 106 | eleqtrd |  |-  ( ph -> M e. dom Q ) | 
						
							| 108 |  | fvelrn |  |-  ( ( Fun Q /\ M e. dom Q ) -> ( Q ` M ) e. ran Q ) | 
						
							| 109 | 98 107 108 | syl2anc |  |-  ( ph -> ( Q ` M ) e. ran Q ) | 
						
							| 110 | 96 109 | eqeltrrd |  |-  ( ph -> _pi e. ran Q ) | 
						
							| 111 |  | eqid |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) | 
						
							| 112 |  | isoeq1 |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 113 | 43 61 52 | 3eqtr4ri |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) | 
						
							| 114 |  | isoeq5 |  |-  ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 115 | 113 114 | ax-mp |  |-  ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 116 | 112 115 | bitrdi |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 117 | 116 | cbviotavw |  |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 118 |  | eqid |  |-  { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } | 
						
							| 119 | 73 74 76 78 82 91 94 110 16 4 17 111 117 118 | fourierdlem51 |  |-  ( ph -> X e. ran ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 120 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 121 | 120 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) | 
						
							| 122 |  | ioossre |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR | 
						
							| 123 | 122 | a1i |  |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 124 | 1 123 | fssresd |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) | 
						
							| 125 | 120 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 126 | 124 125 | fssd |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 128 | 122 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 129 | 1 125 | fssd |  |-  ( ph -> F : RR --> CC ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) | 
						
							| 131 |  | ssid |  |-  RR C_ RR | 
						
							| 132 | 131 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR ) | 
						
							| 133 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 134 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 135 | 133 134 | dvres |  |-  ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 136 | 121 130 132 128 135 | syl22anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 137 | 136 | dmeqd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 138 |  | ioontr |  |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) | 
						
							| 139 | 138 | reseq2i |  |-  ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 140 | 139 | dmeqi |  |-  dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 141 | 140 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 142 |  | cncff |  |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 143 |  | fdm |  |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 144 | 10 142 143 | 3syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 145 | 137 141 144 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 146 |  | dvcn |  |-  ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 147 | 121 127 128 145 146 | syl31anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 148 | 128 121 | sstrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 149 | 88 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 150 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 151 | 150 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 152 | 149 151 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 153 | 152 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 154 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 155 | 154 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 156 | 149 155 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 157 | 85 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 158 | 157 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 159 | 133 153 156 158 | lptioo1cn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 160 | 124 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) | 
						
							| 161 | 131 | a1i |  |-  ( ph -> RR C_ RR ) | 
						
							| 162 | 125 129 161 | dvbss |  |-  ( ph -> dom ( RR _D F ) C_ RR ) | 
						
							| 163 |  | dvfre |  |-  ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 164 | 1 161 163 | syl2anc |  |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 165 |  | 0re |  |-  0 e. RR | 
						
							| 166 | 72 165 71 | lttri |  |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) | 
						
							| 167 | 75 77 166 | mp2an |  |-  -u _pi < _pi | 
						
							| 168 | 167 | a1i |  |-  ( ph -> -u _pi < _pi ) | 
						
							| 169 | 95 | simplld |  |-  ( ph -> ( Q ` 0 ) = -u _pi ) | 
						
							| 170 | 10 142 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 171 | 170 148 159 11 133 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 172 | 156 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 173 | 133 172 152 158 | lptioo2cn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 174 | 170 148 173 12 133 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 175 | 129 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> F : RR --> CC ) | 
						
							| 176 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 177 | 176 | adantl |  |-  ( ( ph /\ k e. ZZ ) -> k e. RR ) | 
						
							| 178 |  | 2re |  |-  2 e. RR | 
						
							| 179 | 178 71 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 180 | 179 | a1i |  |-  ( ph -> ( 2 x. _pi ) e. RR ) | 
						
							| 181 | 2 180 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 182 | 181 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> T e. RR ) | 
						
							| 183 | 177 182 | remulcld |  |-  ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR ) | 
						
							| 184 | 175 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC ) | 
						
							| 185 | 182 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR ) | 
						
							| 186 |  | simplr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ ) | 
						
							| 187 |  | simpr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR ) | 
						
							| 188 | 3 | ad4ant14 |  |-  ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 189 | 184 185 186 187 188 | fperiodmul |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) | 
						
							| 190 |  | eqid |  |-  ( RR _D F ) = ( RR _D F ) | 
						
							| 191 | 175 183 189 190 | fperdvper |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) | 
						
							| 192 | 191 | an32s |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) | 
						
							| 193 | 192 | simpld |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) ) | 
						
							| 194 | 192 | simprd |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) | 
						
							| 195 |  | fveq2 |  |-  ( j = i -> ( Q ` j ) = ( Q ` i ) ) | 
						
							| 196 |  | oveq1 |  |-  ( j = i -> ( j + 1 ) = ( i + 1 ) ) | 
						
							| 197 | 196 | fveq2d |  |-  ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 198 | 195 197 | oveq12d |  |-  ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 199 | 198 | cbvmptv |  |-  ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 200 |  | eqid |  |-  ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) | 
						
							| 201 | 162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200 | fourierdlem71 |  |-  ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 202 | 201 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 203 |  | nfv |  |-  F/ t ( ph /\ i e. ( 0 ..^ M ) ) | 
						
							| 204 |  | nfra1 |  |-  F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z | 
						
							| 205 | 203 204 | nfan |  |-  F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 206 | 136 139 | eqtrdi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 207 | 206 | fveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) ) | 
						
							| 208 |  | fvres |  |-  ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 209 | 207 208 | sylan9eq |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 210 | 209 | fveq2d |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 211 | 210 | adantlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 212 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 213 |  | ssdmres |  |-  ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 214 | 144 213 | sylibr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) | 
						
							| 215 | 214 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) | 
						
							| 216 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 217 | 215 216 | sseldd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) | 
						
							| 218 |  | rspa |  |-  ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 219 | 212 217 218 | syl2anc |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 220 | 211 219 | eqbrtrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 221 | 220 | ex |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 222 | 205 221 | ralrimi |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 223 | 222 | ex |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 224 | 223 | reximdv |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 225 | 202 224 | mpd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 226 | 156 152 160 145 225 | ioodvbdlimc1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 227 | 127 148 159 226 133 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 228 | 156 152 160 145 225 | ioodvbdlimc2 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 229 | 127 148 173 228 133 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 230 |  | frel |  |-  ( ( RR _D F ) : dom ( RR _D F ) --> RR -> Rel ( RR _D F ) ) | 
						
							| 231 | 164 230 | syl |  |-  ( ph -> Rel ( RR _D F ) ) | 
						
							| 232 |  | resindm |  |-  ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) | 
						
							| 233 | 231 232 | syl |  |-  ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) | 
						
							| 234 |  | inss2 |  |-  ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) | 
						
							| 235 | 234 | a1i |  |-  ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) | 
						
							| 236 | 164 235 | fssresd |  |-  ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) | 
						
							| 237 | 233 236 | feq1dd |  |-  ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) | 
						
							| 238 | 237 125 | fssd |  |-  ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> CC ) | 
						
							| 239 |  | ioosscn |  |-  ( -oo (,) X ) C_ CC | 
						
							| 240 |  | ssinss1 |  |-  ( ( -oo (,) X ) C_ CC -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 241 | 239 240 | ax-mp |  |-  ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC | 
						
							| 242 | 241 | a1i |  |-  ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 243 |  | 3simpb |  |-  ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) | 
						
							| 244 |  | simp2 |  |-  ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> x e. dom ( RR _D F ) ) | 
						
							| 245 | 175 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC ) | 
						
							| 246 | 182 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR ) | 
						
							| 247 |  | simplr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ ) | 
						
							| 248 |  | simpr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR ) | 
						
							| 249 |  | eleq1w |  |-  ( x = y -> ( x e. RR <-> y e. RR ) ) | 
						
							| 250 | 249 | anbi2d |  |-  ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) ) | 
						
							| 251 |  | oveq1 |  |-  ( x = y -> ( x + T ) = ( y + T ) ) | 
						
							| 252 | 251 | fveq2d |  |-  ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) | 
						
							| 253 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 254 | 252 253 | eqeq12d |  |-  ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) | 
						
							| 255 | 250 254 | imbi12d |  |-  ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) | 
						
							| 256 | 255 3 | chvarvv |  |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) | 
						
							| 257 | 256 | ad4ant14 |  |-  ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) | 
						
							| 258 | 245 246 247 248 257 | fperiodmul |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) | 
						
							| 259 | 175 183 258 190 | fperdvper |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. dom ( RR _D F ) ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) | 
						
							| 260 | 243 244 259 | syl2anc |  |-  ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) | 
						
							| 261 | 260 | simpld |  |-  ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. dom ( RR _D F ) ) | 
						
							| 262 |  | oveq2 |  |-  ( w = x -> ( _pi - w ) = ( _pi - x ) ) | 
						
							| 263 | 262 | oveq1d |  |-  ( w = x -> ( ( _pi - w ) / T ) = ( ( _pi - x ) / T ) ) | 
						
							| 264 | 263 | fveq2d |  |-  ( w = x -> ( |_ ` ( ( _pi - w ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) | 
						
							| 265 | 264 | oveq1d |  |-  ( w = x -> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 266 | 265 | cbvmptv |  |-  ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 267 |  | eqid |  |-  ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) = ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) | 
						
							| 268 | 73 74 168 82 261 4 266 267 7 8 9 214 | fourierdlem41 |  |-  ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) /\ E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) ) | 
						
							| 269 | 268 | simpld |  |-  ( ph -> E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) | 
						
							| 270 | 133 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 271 | 270 | a1i |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 272 | 241 | a1i |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 273 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 274 | 273 | a1i |  |-  ( y e. RR -> -oo e. RR* ) | 
						
							| 275 |  | rexr |  |-  ( y e. RR -> y e. RR* ) | 
						
							| 276 |  | mnflt |  |-  ( y e. RR -> -oo < y ) | 
						
							| 277 | 274 275 276 | xrltled |  |-  ( y e. RR -> -oo <_ y ) | 
						
							| 278 |  | iooss1 |  |-  ( ( -oo e. RR* /\ -oo <_ y ) -> ( y (,) X ) C_ ( -oo (,) X ) ) | 
						
							| 279 | 274 277 278 | syl2anc |  |-  ( y e. RR -> ( y (,) X ) C_ ( -oo (,) X ) ) | 
						
							| 280 | 279 | 3ad2ant2 |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( -oo (,) X ) ) | 
						
							| 281 |  | simp3 |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ dom ( RR _D F ) ) | 
						
							| 282 | 280 281 | ssind |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) | 
						
							| 283 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 284 | 283 | lpss3 |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC /\ ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 285 | 271 272 282 284 | syl3anc |  |-  ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 286 | 285 | 3adant3l |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 287 | 275 | 3ad2ant2 |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) | 
						
							| 288 | 4 | 3ad2ant1 |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. RR ) | 
						
							| 289 |  | simp3l |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y < X ) | 
						
							| 290 | 133 287 288 289 | lptioo2cn |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) ) | 
						
							| 291 | 286 290 | sseldd |  |-  ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 292 | 291 | rexlimdv3a |  |-  ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) ) | 
						
							| 293 | 269 292 | mpd |  |-  ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 294 | 260 | simprd |  |-  ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) | 
						
							| 295 |  | oveq2 |  |-  ( y = x -> ( _pi - y ) = ( _pi - x ) ) | 
						
							| 296 | 295 | oveq1d |  |-  ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) | 
						
							| 297 | 296 | fveq2d |  |-  ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) | 
						
							| 298 | 297 | oveq1d |  |-  ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 299 | 298 | cbvmptv |  |-  ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 300 |  | id |  |-  ( z = x -> z = x ) | 
						
							| 301 |  | fveq2 |  |-  ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) | 
						
							| 302 | 300 301 | oveq12d |  |-  ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) | 
						
							| 303 | 302 | cbvmptv |  |-  ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) | 
						
							| 304 | 73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303 | fourierdlem49 |  |-  ( ph -> ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) =/= (/) ) | 
						
							| 305 | 238 242 293 304 133 | ellimciota |  |-  ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) | 
						
							| 306 |  | resindm |  |-  ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) | 
						
							| 307 | 231 306 | syl |  |-  ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) | 
						
							| 308 |  | inss2 |  |-  ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) | 
						
							| 309 | 308 | a1i |  |-  ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) | 
						
							| 310 | 164 309 | fssresd |  |-  ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) | 
						
							| 311 | 307 310 | feq1dd |  |-  ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) | 
						
							| 312 | 311 125 | fssd |  |-  ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> CC ) | 
						
							| 313 |  | ioosscn |  |-  ( X (,) +oo ) C_ CC | 
						
							| 314 |  | ssinss1 |  |-  ( ( X (,) +oo ) C_ CC -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 315 | 313 314 | ax-mp |  |-  ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC | 
						
							| 316 | 315 | a1i |  |-  ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 317 | 268 | simprd |  |-  ( ph -> E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) | 
						
							| 318 | 270 | a1i |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 319 | 315 | a1i |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) | 
						
							| 320 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 321 | 320 | a1i |  |-  ( y e. RR -> +oo e. RR* ) | 
						
							| 322 |  | ltpnf |  |-  ( y e. RR -> y < +oo ) | 
						
							| 323 | 275 321 322 | xrltled |  |-  ( y e. RR -> y <_ +oo ) | 
						
							| 324 |  | iooss2 |  |-  ( ( +oo e. RR* /\ y <_ +oo ) -> ( X (,) y ) C_ ( X (,) +oo ) ) | 
						
							| 325 | 321 323 324 | syl2anc |  |-  ( y e. RR -> ( X (,) y ) C_ ( X (,) +oo ) ) | 
						
							| 326 | 325 | 3ad2ant2 |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( X (,) +oo ) ) | 
						
							| 327 |  | simp3 |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ dom ( RR _D F ) ) | 
						
							| 328 | 326 327 | ssind |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) | 
						
							| 329 | 283 | lpss3 |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC /\ ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 330 | 318 319 328 329 | syl3anc |  |-  ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 331 | 330 | 3adant3l |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 332 | 275 | 3ad2ant2 |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) | 
						
							| 333 | 4 | 3ad2ant1 |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. RR ) | 
						
							| 334 |  | simp3l |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X < y ) | 
						
							| 335 | 133 332 333 334 | lptioo1cn |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) ) | 
						
							| 336 | 331 335 | sseldd |  |-  ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 337 | 336 | rexlimdv3a |  |-  ( ph -> ( E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) ) | 
						
							| 338 | 317 337 | mpd |  |-  ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) | 
						
							| 339 |  | biid |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) ) | 
						
							| 340 | 73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339 | fourierdlem48 |  |-  ( ph -> ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) =/= (/) ) | 
						
							| 341 | 312 316 338 340 133 | ellimciota |  |-  ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) | 
						
							| 342 |  | fveq2 |  |-  ( n = k -> ( A ` n ) = ( A ` k ) ) | 
						
							| 343 |  | oveq1 |  |-  ( n = k -> ( n x. X ) = ( k x. X ) ) | 
						
							| 344 | 343 | fveq2d |  |-  ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) | 
						
							| 345 | 342 344 | oveq12d |  |-  ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) | 
						
							| 346 |  | fveq2 |  |-  ( n = k -> ( B ` n ) = ( B ` k ) ) | 
						
							| 347 | 343 | fveq2d |  |-  ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) | 
						
							| 348 | 346 347 | oveq12d |  |-  ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) | 
						
							| 349 | 345 348 | oveq12d |  |-  ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 350 | 349 | cbvsumv |  |-  sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) | 
						
							| 351 |  | oveq2 |  |-  ( j = m -> ( 1 ... j ) = ( 1 ... m ) ) | 
						
							| 352 | 351 | eqcomd |  |-  ( j = m -> ( 1 ... m ) = ( 1 ... j ) ) | 
						
							| 353 | 352 | sumeq1d |  |-  ( j = m -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 354 | 350 353 | eqtr2id |  |-  ( j = m -> sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 355 | 354 | oveq2d |  |-  ( j = m -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 356 | 355 | cbvmptv |  |-  ( j e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 357 |  | fdm |  |-  ( F : RR --> RR -> dom F = RR ) | 
						
							| 358 | 1 357 | syl |  |-  ( ph -> dom F = RR ) | 
						
							| 359 | 358 161 | eqsstrd |  |-  ( ph -> dom F C_ RR ) | 
						
							| 360 | 358 | feq2d |  |-  ( ph -> ( F : dom F --> RR <-> F : RR --> RR ) ) | 
						
							| 361 | 1 360 | mpbird |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 362 | 359 | sselda |  |-  ( ( ph /\ t e. dom F ) -> t e. RR ) | 
						
							| 363 | 362 | adantr |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> t e. RR ) | 
						
							| 364 | 176 | adantl |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> k e. RR ) | 
						
							| 365 | 182 | adantlr |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> T e. RR ) | 
						
							| 366 | 364 365 | remulcld |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( k x. T ) e. RR ) | 
						
							| 367 | 363 366 | readdcld |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. RR ) | 
						
							| 368 | 358 | eqcomd |  |-  ( ph -> RR = dom F ) | 
						
							| 369 | 368 | ad2antrr |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> RR = dom F ) | 
						
							| 370 | 367 369 | eleqtrd |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom F ) | 
						
							| 371 |  | id |  |-  ( ( ph /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) | 
						
							| 372 | 371 | adantlr |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) | 
						
							| 373 | 372 363 189 | syl2anc |  |-  ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) | 
						
							| 374 | 359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200 | fourierdlem71 |  |-  ( ph -> E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u ) | 
						
							| 375 | 358 | raleqdv |  |-  ( ph -> ( A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) | 
						
							| 376 | 375 | rexbidv |  |-  ( ph -> ( E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) | 
						
							| 377 | 374 376 | mpbid |  |-  ( ph -> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) | 
						
							| 378 | 1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4 | fourierdlem112 |  |-  ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |