| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem113.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem113.t |
|- T = ( 2 x. _pi ) |
| 3 |
|
fourierdlem113.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fourierdlem113.x |
|- ( ph -> X e. RR ) |
| 5 |
|
fourierdlem113.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 6 |
|
fourierdlem113.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 7 |
|
fourierdlem113.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 8 |
|
fourierdlem113.m |
|- ( ph -> M e. NN ) |
| 9 |
|
fourierdlem113.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 10 |
|
fourierdlem113.dvcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 11 |
|
fourierdlem113.dvlb |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 12 |
|
fourierdlem113.dvub |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 13 |
|
fourierdlem113.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 14 |
|
fourierdlem113.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 15 |
|
fourierdlem113.15 |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 16 |
|
fourierdlem113.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
| 17 |
|
fourierdlem113.exq |
|- ( ph -> ( E ` X ) e. ran Q ) |
| 18 |
|
oveq1 |
|- ( w = y -> ( w mod ( 2 x. _pi ) ) = ( y mod ( 2 x. _pi ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( w = y -> ( ( w mod ( 2 x. _pi ) ) = 0 <-> ( y mod ( 2 x. _pi ) ) = 0 ) ) |
| 20 |
|
oveq2 |
|- ( w = y -> ( ( k + ( 1 / 2 ) ) x. w ) = ( ( k + ( 1 / 2 ) ) x. y ) ) |
| 21 |
20
|
fveq2d |
|- ( w = y -> ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) ) |
| 22 |
|
oveq1 |
|- ( w = y -> ( w / 2 ) = ( y / 2 ) ) |
| 23 |
22
|
fveq2d |
|- ( w = y -> ( sin ` ( w / 2 ) ) = ( sin ` ( y / 2 ) ) ) |
| 24 |
23
|
oveq2d |
|- ( w = y -> ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) |
| 25 |
21 24
|
oveq12d |
|- ( w = y -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) = ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) |
| 26 |
19 25
|
ifbieq2d |
|- ( w = y -> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
| 27 |
26
|
cbvmptv |
|- ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
| 28 |
|
oveq2 |
|- ( k = m -> ( 2 x. k ) = ( 2 x. m ) ) |
| 29 |
28
|
oveq1d |
|- ( k = m -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. m ) + 1 ) ) |
| 30 |
29
|
oveq1d |
|- ( k = m -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) ) |
| 31 |
|
oveq1 |
|- ( k = m -> ( k + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) |
| 32 |
31
|
oveq1d |
|- ( k = m -> ( ( k + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. y ) ) |
| 33 |
32
|
fveq2d |
|- ( k = m -> ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) ) |
| 34 |
33
|
oveq1d |
|- ( k = m -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) |
| 35 |
30 34
|
ifeq12d |
|- ( k = m -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
| 36 |
35
|
mpteq2dv |
|- ( k = m -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
| 37 |
27 36
|
eqtrid |
|- ( k = m -> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
| 38 |
37
|
cbvmptv |
|- ( k e. NN |-> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) ) = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
| 39 |
|
oveq1 |
|- ( w = y -> ( w + ( j x. T ) ) = ( y + ( j x. T ) ) ) |
| 40 |
39
|
eleq1d |
|- ( w = y -> ( ( w + ( j x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) |
| 41 |
40
|
rexbidv |
|- ( w = y -> ( E. j e. ZZ ( w + ( j x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) |
| 42 |
41
|
cbvrabv |
|- { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } |
| 43 |
42
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) |
| 44 |
43
|
fveq2i |
|- ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) |
| 45 |
44
|
oveq1i |
|- ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) - 1 ) |
| 46 |
|
oveq1 |
|- ( k = j -> ( k x. T ) = ( j x. T ) ) |
| 47 |
46
|
oveq2d |
|- ( k = j -> ( y + ( k x. T ) ) = ( y + ( j x. T ) ) ) |
| 48 |
47
|
eleq1d |
|- ( k = j -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) |
| 49 |
48
|
cbvrexvw |
|- ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) |
| 50 |
49
|
a1i |
|- ( y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) |
| 51 |
50
|
rabbiia |
|- { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } |
| 52 |
51
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) |
| 53 |
|
isoeq5 |
|- ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 54 |
52 53
|
ax-mp |
|- ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
| 55 |
54
|
a1i |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 56 |
46
|
oveq2d |
|- ( k = j -> ( w + ( k x. T ) ) = ( w + ( j x. T ) ) ) |
| 57 |
56
|
eleq1d |
|- ( k = j -> ( ( w + ( k x. T ) ) e. ran Q <-> ( w + ( j x. T ) ) e. ran Q ) ) |
| 58 |
57
|
cbvrexvw |
|- ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) |
| 59 |
58
|
a1i |
|- ( w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) ) |
| 60 |
59
|
rabbiia |
|- { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } |
| 61 |
60
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) |
| 62 |
61
|
fveq2i |
|- ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) |
| 63 |
62
|
oveq1i |
|- ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) |
| 64 |
63
|
oveq2i |
|- ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) |
| 65 |
|
isoeq4 |
|- ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 66 |
64 65
|
ax-mp |
|- ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
| 67 |
66
|
a1i |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 68 |
|
isoeq1 |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 69 |
55 67 68
|
3bitrd |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
| 70 |
69
|
cbviotavw |
|- ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
| 71 |
|
pire |
|- _pi e. RR |
| 72 |
71
|
renegcli |
|- -u _pi e. RR |
| 73 |
72
|
a1i |
|- ( ph -> -u _pi e. RR ) |
| 74 |
71
|
a1i |
|- ( ph -> _pi e. RR ) |
| 75 |
|
negpilt0 |
|- -u _pi < 0 |
| 76 |
75
|
a1i |
|- ( ph -> -u _pi < 0 ) |
| 77 |
|
pipos |
|- 0 < _pi |
| 78 |
77
|
a1i |
|- ( ph -> 0 < _pi ) |
| 79 |
|
picn |
|- _pi e. CC |
| 80 |
79
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 81 |
79 79
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
| 82 |
80 2 81
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
| 83 |
7
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 84 |
8 83
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 85 |
9 84
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 86 |
85
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 87 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 88 |
86 87
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 89 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 90 |
|
rnffi |
|- ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. Fin ) -> ran Q e. Fin ) |
| 91 |
88 89 90
|
syl2anc |
|- ( ph -> ran Q e. Fin ) |
| 92 |
7 8 9
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 93 |
|
frn |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> ran Q C_ ( -u _pi [,] _pi ) ) |
| 94 |
92 93
|
syl |
|- ( ph -> ran Q C_ ( -u _pi [,] _pi ) ) |
| 95 |
85
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 96 |
95
|
simplrd |
|- ( ph -> ( Q ` M ) = _pi ) |
| 97 |
|
ffun |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> Fun Q ) |
| 98 |
92 97
|
syl |
|- ( ph -> Fun Q ) |
| 99 |
8
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 100 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 101 |
99 100
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 102 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 103 |
101 102
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 104 |
|
fdm |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> dom Q = ( 0 ... M ) ) |
| 105 |
92 104
|
syl |
|- ( ph -> dom Q = ( 0 ... M ) ) |
| 106 |
105
|
eqcomd |
|- ( ph -> ( 0 ... M ) = dom Q ) |
| 107 |
103 106
|
eleqtrd |
|- ( ph -> M e. dom Q ) |
| 108 |
|
fvelrn |
|- ( ( Fun Q /\ M e. dom Q ) -> ( Q ` M ) e. ran Q ) |
| 109 |
98 107 108
|
syl2anc |
|- ( ph -> ( Q ` M ) e. ran Q ) |
| 110 |
96 109
|
eqeltrrd |
|- ( ph -> _pi e. ran Q ) |
| 111 |
|
eqid |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) |
| 112 |
|
isoeq1 |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
| 113 |
43 61 52
|
3eqtr4ri |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) |
| 114 |
|
isoeq5 |
|- ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) |
| 115 |
113 114
|
ax-mp |
|- ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) |
| 116 |
112 115
|
bitrdi |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) |
| 117 |
116
|
cbviotavw |
|- ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) |
| 118 |
|
eqid |
|- { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } |
| 119 |
73 74 76 78 82 91 94 110 16 4 17 111 117 118
|
fourierdlem51 |
|- ( ph -> X e. ran ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
| 120 |
|
ax-resscn |
|- RR C_ CC |
| 121 |
120
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
| 122 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
| 123 |
122
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 124 |
1 123
|
fssresd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
| 125 |
120
|
a1i |
|- ( ph -> RR C_ CC ) |
| 126 |
124 125
|
fssd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 128 |
122
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 129 |
1 125
|
fssd |
|- ( ph -> F : RR --> CC ) |
| 130 |
129
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
| 131 |
|
ssid |
|- RR C_ RR |
| 132 |
131
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR ) |
| 133 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 134 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 135 |
133 134
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 136 |
121 130 132 128 135
|
syl22anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 137 |
136
|
dmeqd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 138 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |
| 139 |
138
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 140 |
139
|
dmeqi |
|- dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 141 |
140
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 142 |
|
cncff |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 143 |
|
fdm |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 144 |
10 142 143
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 145 |
137 141 144
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 146 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 147 |
121 127 128 145 146
|
syl31anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 148 |
128 121
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 149 |
88
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 150 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 151 |
150
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 152 |
149 151
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 153 |
152
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 154 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 155 |
154
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 156 |
149 155
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 157 |
85
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 158 |
157
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 159 |
133 153 156 158
|
lptioo1cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 160 |
124
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
| 161 |
131
|
a1i |
|- ( ph -> RR C_ RR ) |
| 162 |
125 129 161
|
dvbss |
|- ( ph -> dom ( RR _D F ) C_ RR ) |
| 163 |
|
dvfre |
|- ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 164 |
1 161 163
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 165 |
|
0re |
|- 0 e. RR |
| 166 |
72 165 71
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
| 167 |
75 77 166
|
mp2an |
|- -u _pi < _pi |
| 168 |
167
|
a1i |
|- ( ph -> -u _pi < _pi ) |
| 169 |
95
|
simplld |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
| 170 |
10 142
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 171 |
170 148 159 11 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 172 |
156
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 173 |
133 172 152 158
|
lptioo2cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 174 |
170 148 173 12 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 175 |
129
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> F : RR --> CC ) |
| 176 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
| 177 |
176
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> k e. RR ) |
| 178 |
|
2re |
|- 2 e. RR |
| 179 |
178 71
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 180 |
179
|
a1i |
|- ( ph -> ( 2 x. _pi ) e. RR ) |
| 181 |
2 180
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 182 |
181
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> T e. RR ) |
| 183 |
177 182
|
remulcld |
|- ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
| 184 |
175
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC ) |
| 185 |
182
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR ) |
| 186 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ ) |
| 187 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR ) |
| 188 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 189 |
184 185 186 187 188
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) |
| 190 |
|
eqid |
|- ( RR _D F ) = ( RR _D F ) |
| 191 |
175 183 189 190
|
fperdvper |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
| 192 |
191
|
an32s |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
| 193 |
192
|
simpld |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) ) |
| 194 |
192
|
simprd |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) |
| 195 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
| 196 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
| 197 |
196
|
fveq2d |
|- ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
| 198 |
195 197
|
oveq12d |
|- ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 199 |
198
|
cbvmptv |
|- ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 200 |
|
eqid |
|- ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) |
| 201 |
162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200
|
fourierdlem71 |
|- ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 202 |
201
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 203 |
|
nfv |
|- F/ t ( ph /\ i e. ( 0 ..^ M ) ) |
| 204 |
|
nfra1 |
|- F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z |
| 205 |
203 204
|
nfan |
|- F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 206 |
136 139
|
eqtrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 207 |
206
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) ) |
| 208 |
|
fvres |
|- ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
| 209 |
207 208
|
sylan9eq |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
| 210 |
209
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
| 211 |
210
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
| 212 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 213 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 214 |
144 213
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
| 215 |
214
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
| 216 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 217 |
215 216
|
sseldd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) |
| 218 |
|
rspa |
|- ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 219 |
212 217 218
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
| 220 |
211 219
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
| 221 |
220
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
| 222 |
205 221
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
| 223 |
222
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
| 224 |
223
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
| 225 |
202 224
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
| 226 |
156 152 160 145 225
|
ioodvbdlimc1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 227 |
127 148 159 226 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 228 |
156 152 160 145 225
|
ioodvbdlimc2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 229 |
127 148 173 228 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 230 |
|
frel |
|- ( ( RR _D F ) : dom ( RR _D F ) --> RR -> Rel ( RR _D F ) ) |
| 231 |
164 230
|
syl |
|- ( ph -> Rel ( RR _D F ) ) |
| 232 |
|
resindm |
|- ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) |
| 233 |
231 232
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) |
| 234 |
|
inss2 |
|- ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) |
| 235 |
234
|
a1i |
|- ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) |
| 236 |
164 235
|
fssresd |
|- ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) |
| 237 |
233 236
|
feq1dd |
|- ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) |
| 238 |
237 125
|
fssd |
|- ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> CC ) |
| 239 |
|
ioosscn |
|- ( -oo (,) X ) C_ CC |
| 240 |
|
ssinss1 |
|- ( ( -oo (,) X ) C_ CC -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
| 241 |
239 240
|
ax-mp |
|- ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC |
| 242 |
241
|
a1i |
|- ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
| 243 |
|
3simpb |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
| 244 |
|
simp2 |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> x e. dom ( RR _D F ) ) |
| 245 |
175
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC ) |
| 246 |
182
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR ) |
| 247 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ ) |
| 248 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR ) |
| 249 |
|
eleq1w |
|- ( x = y -> ( x e. RR <-> y e. RR ) ) |
| 250 |
249
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) ) |
| 251 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
| 252 |
251
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
| 253 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 254 |
252 253
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
| 255 |
250 254
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
| 256 |
255 3
|
chvarvv |
|- ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 257 |
256
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 258 |
245 246 247 248 257
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
| 259 |
175 183 258 190
|
fperdvper |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. dom ( RR _D F ) ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) |
| 260 |
243 244 259
|
syl2anc |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) |
| 261 |
260
|
simpld |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. dom ( RR _D F ) ) |
| 262 |
|
oveq2 |
|- ( w = x -> ( _pi - w ) = ( _pi - x ) ) |
| 263 |
262
|
oveq1d |
|- ( w = x -> ( ( _pi - w ) / T ) = ( ( _pi - x ) / T ) ) |
| 264 |
263
|
fveq2d |
|- ( w = x -> ( |_ ` ( ( _pi - w ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
| 265 |
264
|
oveq1d |
|- ( w = x -> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
| 266 |
265
|
cbvmptv |
|- ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
| 267 |
|
eqid |
|- ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) = ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) |
| 268 |
73 74 168 82 261 4 266 267 7 8 9 214
|
fourierdlem41 |
|- ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) /\ E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) ) |
| 269 |
268
|
simpld |
|- ( ph -> E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) |
| 270 |
133
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 271 |
270
|
a1i |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) |
| 272 |
241
|
a1i |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
| 273 |
|
mnfxr |
|- -oo e. RR* |
| 274 |
273
|
a1i |
|- ( y e. RR -> -oo e. RR* ) |
| 275 |
|
rexr |
|- ( y e. RR -> y e. RR* ) |
| 276 |
|
mnflt |
|- ( y e. RR -> -oo < y ) |
| 277 |
274 275 276
|
xrltled |
|- ( y e. RR -> -oo <_ y ) |
| 278 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ y ) -> ( y (,) X ) C_ ( -oo (,) X ) ) |
| 279 |
274 277 278
|
syl2anc |
|- ( y e. RR -> ( y (,) X ) C_ ( -oo (,) X ) ) |
| 280 |
279
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( -oo (,) X ) ) |
| 281 |
|
simp3 |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ dom ( RR _D F ) ) |
| 282 |
280 281
|
ssind |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) |
| 283 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 284 |
283
|
lpss3 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC /\ ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
| 285 |
271 272 282 284
|
syl3anc |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
| 286 |
285
|
3adant3l |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
| 287 |
275
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) |
| 288 |
4
|
3ad2ant1 |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. RR ) |
| 289 |
|
simp3l |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y < X ) |
| 290 |
133 287 288 289
|
lptioo2cn |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) ) |
| 291 |
286 290
|
sseldd |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
| 292 |
291
|
rexlimdv3a |
|- ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) ) |
| 293 |
269 292
|
mpd |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
| 294 |
260
|
simprd |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) |
| 295 |
|
oveq2 |
|- ( y = x -> ( _pi - y ) = ( _pi - x ) ) |
| 296 |
295
|
oveq1d |
|- ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) |
| 297 |
296
|
fveq2d |
|- ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
| 298 |
297
|
oveq1d |
|- ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
| 299 |
298
|
cbvmptv |
|- ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
| 300 |
|
id |
|- ( z = x -> z = x ) |
| 301 |
|
fveq2 |
|- ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) |
| 302 |
300 301
|
oveq12d |
|- ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
| 303 |
302
|
cbvmptv |
|- ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
| 304 |
73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303
|
fourierdlem49 |
|- ( ph -> ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) =/= (/) ) |
| 305 |
238 242 293 304 133
|
ellimciota |
|- ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) |
| 306 |
|
resindm |
|- ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) |
| 307 |
231 306
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) |
| 308 |
|
inss2 |
|- ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) |
| 309 |
308
|
a1i |
|- ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) |
| 310 |
164 309
|
fssresd |
|- ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) |
| 311 |
307 310
|
feq1dd |
|- ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) |
| 312 |
311 125
|
fssd |
|- ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> CC ) |
| 313 |
|
ioosscn |
|- ( X (,) +oo ) C_ CC |
| 314 |
|
ssinss1 |
|- ( ( X (,) +oo ) C_ CC -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
| 315 |
313 314
|
ax-mp |
|- ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC |
| 316 |
315
|
a1i |
|- ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
| 317 |
268
|
simprd |
|- ( ph -> E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) |
| 318 |
270
|
a1i |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) |
| 319 |
315
|
a1i |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
| 320 |
|
pnfxr |
|- +oo e. RR* |
| 321 |
320
|
a1i |
|- ( y e. RR -> +oo e. RR* ) |
| 322 |
|
ltpnf |
|- ( y e. RR -> y < +oo ) |
| 323 |
275 321 322
|
xrltled |
|- ( y e. RR -> y <_ +oo ) |
| 324 |
|
iooss2 |
|- ( ( +oo e. RR* /\ y <_ +oo ) -> ( X (,) y ) C_ ( X (,) +oo ) ) |
| 325 |
321 323 324
|
syl2anc |
|- ( y e. RR -> ( X (,) y ) C_ ( X (,) +oo ) ) |
| 326 |
325
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( X (,) +oo ) ) |
| 327 |
|
simp3 |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ dom ( RR _D F ) ) |
| 328 |
326 327
|
ssind |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) |
| 329 |
283
|
lpss3 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC /\ ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
| 330 |
318 319 328 329
|
syl3anc |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
| 331 |
330
|
3adant3l |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
| 332 |
275
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) |
| 333 |
4
|
3ad2ant1 |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. RR ) |
| 334 |
|
simp3l |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X < y ) |
| 335 |
133 332 333 334
|
lptioo1cn |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) ) |
| 336 |
331 335
|
sseldd |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
| 337 |
336
|
rexlimdv3a |
|- ( ph -> ( E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) ) |
| 338 |
317 337
|
mpd |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
| 339 |
|
biid |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) ) |
| 340 |
73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339
|
fourierdlem48 |
|- ( ph -> ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
| 341 |
312 316 338 340 133
|
ellimciota |
|- ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) |
| 342 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
| 343 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
| 344 |
343
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) |
| 345 |
342 344
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
| 346 |
|
fveq2 |
|- ( n = k -> ( B ` n ) = ( B ` k ) ) |
| 347 |
343
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
| 348 |
346 347
|
oveq12d |
|- ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
| 349 |
345 348
|
oveq12d |
|- ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 350 |
349
|
cbvsumv |
|- sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
| 351 |
|
oveq2 |
|- ( j = m -> ( 1 ... j ) = ( 1 ... m ) ) |
| 352 |
351
|
eqcomd |
|- ( j = m -> ( 1 ... m ) = ( 1 ... j ) ) |
| 353 |
352
|
sumeq1d |
|- ( j = m -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 354 |
350 353
|
eqtr2id |
|- ( j = m -> sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 355 |
354
|
oveq2d |
|- ( j = m -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
| 356 |
355
|
cbvmptv |
|- ( j e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
| 357 |
|
fdm |
|- ( F : RR --> RR -> dom F = RR ) |
| 358 |
1 357
|
syl |
|- ( ph -> dom F = RR ) |
| 359 |
358 161
|
eqsstrd |
|- ( ph -> dom F C_ RR ) |
| 360 |
358
|
feq2d |
|- ( ph -> ( F : dom F --> RR <-> F : RR --> RR ) ) |
| 361 |
1 360
|
mpbird |
|- ( ph -> F : dom F --> RR ) |
| 362 |
359
|
sselda |
|- ( ( ph /\ t e. dom F ) -> t e. RR ) |
| 363 |
362
|
adantr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> t e. RR ) |
| 364 |
176
|
adantl |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> k e. RR ) |
| 365 |
182
|
adantlr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> T e. RR ) |
| 366 |
364 365
|
remulcld |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
| 367 |
363 366
|
readdcld |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. RR ) |
| 368 |
358
|
eqcomd |
|- ( ph -> RR = dom F ) |
| 369 |
368
|
ad2antrr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> RR = dom F ) |
| 370 |
367 369
|
eleqtrd |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom F ) |
| 371 |
|
id |
|- ( ( ph /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
| 372 |
371
|
adantlr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
| 373 |
372 363 189
|
syl2anc |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) |
| 374 |
359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200
|
fourierdlem71 |
|- ( ph -> E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u ) |
| 375 |
358
|
raleqdv |
|- ( ph -> ( A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) |
| 376 |
375
|
rexbidv |
|- ( ph -> ( E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) |
| 377 |
374 376
|
mpbid |
|- ( ph -> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) |
| 378 |
1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4
|
fourierdlem112 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |