| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem114.f |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | fourierdlem114.t |  |-  T = ( 2 x. _pi ) | 
						
							| 3 |  | fourierdlem114.per |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 4 |  | fourierdlem114.g |  |-  G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) | 
						
							| 5 |  | fourierdlem114.dmdv |  |-  ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) | 
						
							| 6 |  | fourierdlem114.gcn |  |-  ( ph -> G e. ( dom G -cn-> CC ) ) | 
						
							| 7 |  | fourierdlem114.rlim |  |-  ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) | 
						
							| 8 |  | fourierdlem114.llim |  |-  ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) | 
						
							| 9 |  | fourierdlem114.x |  |-  ( ph -> X e. RR ) | 
						
							| 10 |  | fourierdlem114.l |  |-  ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) | 
						
							| 11 |  | fourierdlem114.r |  |-  ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) | 
						
							| 12 |  | fourierdlem114.a |  |-  A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 13 |  | fourierdlem114.b |  |-  B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 14 |  | fourierdlem114.s |  |-  S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 15 |  | fourierdlem114.p |  |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 16 |  | fourierdlem114.e |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) | 
						
							| 17 |  | fourierdlem114.h |  |-  H = ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) | 
						
							| 18 |  | fourierdlem114.m |  |-  M = ( ( # ` H ) - 1 ) | 
						
							| 19 |  | fourierdlem114.q |  |-  Q = ( iota g g Isom < , < ( ( 0 ... M ) , H ) ) | 
						
							| 20 |  | 2z |  |-  2 e. ZZ | 
						
							| 21 | 20 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 22 |  | tpfi |  |-  { -u _pi , _pi , ( E ` X ) } e. Fin | 
						
							| 23 | 22 | a1i |  |-  ( ph -> { -u _pi , _pi , ( E ` X ) } e. Fin ) | 
						
							| 24 |  | pire |  |-  _pi e. RR | 
						
							| 25 | 24 | renegcli |  |-  -u _pi e. RR | 
						
							| 26 | 25 | rexri |  |-  -u _pi e. RR* | 
						
							| 27 | 24 | rexri |  |-  _pi e. RR* | 
						
							| 28 |  | negpilt0 |  |-  -u _pi < 0 | 
						
							| 29 |  | pipos |  |-  0 < _pi | 
						
							| 30 |  | 0re |  |-  0 e. RR | 
						
							| 31 | 25 30 24 | lttri |  |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) | 
						
							| 32 | 28 29 31 | mp2an |  |-  -u _pi < _pi | 
						
							| 33 | 25 24 32 | ltleii |  |-  -u _pi <_ _pi | 
						
							| 34 |  | prunioo |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) ) | 
						
							| 35 | 26 27 33 34 | mp3an |  |-  ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) | 
						
							| 36 | 35 | difeq1i |  |-  ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( -u _pi [,] _pi ) \ dom G ) | 
						
							| 37 |  | difundir |  |-  ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) | 
						
							| 38 | 36 37 | eqtr3i |  |-  ( ( -u _pi [,] _pi ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) | 
						
							| 39 |  | prfi |  |-  { -u _pi , _pi } e. Fin | 
						
							| 40 |  | diffi |  |-  ( { -u _pi , _pi } e. Fin -> ( { -u _pi , _pi } \ dom G ) e. Fin ) | 
						
							| 41 | 39 40 | mp1i |  |-  ( ph -> ( { -u _pi , _pi } \ dom G ) e. Fin ) | 
						
							| 42 |  | unfi |  |-  ( ( ( ( -u _pi (,) _pi ) \ dom G ) e. Fin /\ ( { -u _pi , _pi } \ dom G ) e. Fin ) -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) | 
						
							| 43 | 5 41 42 | syl2anc |  |-  ( ph -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) | 
						
							| 44 | 38 43 | eqeltrid |  |-  ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) | 
						
							| 45 |  | unfi |  |-  ( ( { -u _pi , _pi , ( E ` X ) } e. Fin /\ ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) | 
						
							| 46 | 23 44 45 | syl2anc |  |-  ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) | 
						
							| 47 | 17 46 | eqeltrid |  |-  ( ph -> H e. Fin ) | 
						
							| 48 |  | hashcl |  |-  ( H e. Fin -> ( # ` H ) e. NN0 ) | 
						
							| 49 | 47 48 | syl |  |-  ( ph -> ( # ` H ) e. NN0 ) | 
						
							| 50 | 49 | nn0zd |  |-  ( ph -> ( # ` H ) e. ZZ ) | 
						
							| 51 | 25 32 | ltneii |  |-  -u _pi =/= _pi | 
						
							| 52 |  | hashprg |  |-  ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) ) | 
						
							| 53 | 25 24 52 | mp2an |  |-  ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) | 
						
							| 54 | 51 53 | mpbi |  |-  ( # ` { -u _pi , _pi } ) = 2 | 
						
							| 55 | 22 | elexi |  |-  { -u _pi , _pi , ( E ` X ) } e. _V | 
						
							| 56 |  | ovex |  |-  ( -u _pi [,] _pi ) e. _V | 
						
							| 57 |  | difexg |  |-  ( ( -u _pi [,] _pi ) e. _V -> ( ( -u _pi [,] _pi ) \ dom G ) e. _V ) | 
						
							| 58 | 56 57 | ax-mp |  |-  ( ( -u _pi [,] _pi ) \ dom G ) e. _V | 
						
							| 59 | 55 58 | unex |  |-  ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. _V | 
						
							| 60 | 17 59 | eqeltri |  |-  H e. _V | 
						
							| 61 |  | negex |  |-  -u _pi e. _V | 
						
							| 62 | 61 | tpid1 |  |-  -u _pi e. { -u _pi , _pi , ( E ` X ) } | 
						
							| 63 | 24 | elexi |  |-  _pi e. _V | 
						
							| 64 | 63 | tpid2 |  |-  _pi e. { -u _pi , _pi , ( E ` X ) } | 
						
							| 65 |  | prssi |  |-  ( ( -u _pi e. { -u _pi , _pi , ( E ` X ) } /\ _pi e. { -u _pi , _pi , ( E ` X ) } ) -> { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } ) | 
						
							| 66 | 62 64 65 | mp2an |  |-  { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } | 
						
							| 67 |  | ssun1 |  |-  { -u _pi , _pi , ( E ` X ) } C_ ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) | 
						
							| 68 | 67 17 | sseqtrri |  |-  { -u _pi , _pi , ( E ` X ) } C_ H | 
						
							| 69 | 66 68 | sstri |  |-  { -u _pi , _pi } C_ H | 
						
							| 70 |  | hashss |  |-  ( ( H e. _V /\ { -u _pi , _pi } C_ H ) -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) | 
						
							| 71 | 60 69 70 | mp2an |  |-  ( # ` { -u _pi , _pi } ) <_ ( # ` H ) | 
						
							| 72 | 71 | a1i |  |-  ( ph -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) | 
						
							| 73 | 54 72 | eqbrtrrid |  |-  ( ph -> 2 <_ ( # ` H ) ) | 
						
							| 74 |  | eluz2 |  |-  ( ( # ` H ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( # ` H ) e. ZZ /\ 2 <_ ( # ` H ) ) ) | 
						
							| 75 | 21 50 73 74 | syl3anbrc |  |-  ( ph -> ( # ` H ) e. ( ZZ>= ` 2 ) ) | 
						
							| 76 |  | uz2m1nn |  |-  ( ( # ` H ) e. ( ZZ>= ` 2 ) -> ( ( # ` H ) - 1 ) e. NN ) | 
						
							| 77 | 75 76 | syl |  |-  ( ph -> ( ( # ` H ) - 1 ) e. NN ) | 
						
							| 78 | 18 77 | eqeltrid |  |-  ( ph -> M e. NN ) | 
						
							| 79 | 25 | a1i |  |-  ( ph -> -u _pi e. RR ) | 
						
							| 80 | 24 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 81 |  | negpitopissre |  |-  ( -u _pi (,] _pi ) C_ RR | 
						
							| 82 | 32 | a1i |  |-  ( ph -> -u _pi < _pi ) | 
						
							| 83 |  | picn |  |-  _pi e. CC | 
						
							| 84 | 83 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 85 | 83 83 | subnegi |  |-  ( _pi - -u _pi ) = ( _pi + _pi ) | 
						
							| 86 | 84 2 85 | 3eqtr4i |  |-  T = ( _pi - -u _pi ) | 
						
							| 87 | 79 80 82 86 16 | fourierdlem4 |  |-  ( ph -> E : RR --> ( -u _pi (,] _pi ) ) | 
						
							| 88 | 87 9 | ffvelcdmd |  |-  ( ph -> ( E ` X ) e. ( -u _pi (,] _pi ) ) | 
						
							| 89 | 81 88 | sselid |  |-  ( ph -> ( E ` X ) e. RR ) | 
						
							| 90 | 79 80 89 | 3jca |  |-  ( ph -> ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) ) | 
						
							| 91 |  | fvex |  |-  ( E ` X ) e. _V | 
						
							| 92 | 61 63 91 | tpss |  |-  ( ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) <-> { -u _pi , _pi , ( E ` X ) } C_ RR ) | 
						
							| 93 | 90 92 | sylib |  |-  ( ph -> { -u _pi , _pi , ( E ` X ) } C_ RR ) | 
						
							| 94 |  | iccssre |  |-  ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) | 
						
							| 95 | 25 24 94 | mp2an |  |-  ( -u _pi [,] _pi ) C_ RR | 
						
							| 96 |  | ssdifss |  |-  ( ( -u _pi [,] _pi ) C_ RR -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) | 
						
							| 97 | 95 96 | mp1i |  |-  ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) | 
						
							| 98 | 93 97 | unssd |  |-  ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ RR ) | 
						
							| 99 | 17 98 | eqsstrid |  |-  ( ph -> H C_ RR ) | 
						
							| 100 | 47 99 19 18 | fourierdlem36 |  |-  ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) ) | 
						
							| 101 |  | isof1o |  |-  ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -1-1-onto-> H ) | 
						
							| 102 |  | f1of |  |-  ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) --> H ) | 
						
							| 103 | 100 101 102 | 3syl |  |-  ( ph -> Q : ( 0 ... M ) --> H ) | 
						
							| 104 | 103 99 | fssd |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 105 |  | reex |  |-  RR e. _V | 
						
							| 106 |  | ovex |  |-  ( 0 ... M ) e. _V | 
						
							| 107 | 105 106 | elmap |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) | 
						
							| 108 | 104 107 | sylibr |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 109 |  | fveq2 |  |-  ( 0 = i -> ( Q ` 0 ) = ( Q ` i ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) = ( Q ` i ) ) | 
						
							| 111 | 104 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 112 | 111 | leidd |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` i ) ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` i ) <_ ( Q ` i ) ) | 
						
							| 114 | 110 113 | eqbrtrd |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) | 
						
							| 115 |  | elfzelz |  |-  ( i e. ( 0 ... M ) -> i e. ZZ ) | 
						
							| 116 | 115 | zred |  |-  ( i e. ( 0 ... M ) -> i e. RR ) | 
						
							| 117 | 116 | ad2antlr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i e. RR ) | 
						
							| 118 |  | elfzle1 |  |-  ( i e. ( 0 ... M ) -> 0 <_ i ) | 
						
							| 119 | 118 | ad2antlr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 <_ i ) | 
						
							| 120 |  | neqne |  |-  ( -. 0 = i -> 0 =/= i ) | 
						
							| 121 | 120 | necomd |  |-  ( -. 0 = i -> i =/= 0 ) | 
						
							| 122 | 121 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i =/= 0 ) | 
						
							| 123 | 117 119 122 | ne0gt0d |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 < i ) | 
						
							| 124 |  | nnssnn0 |  |-  NN C_ NN0 | 
						
							| 125 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 126 | 124 125 | sseqtri |  |-  NN C_ ( ZZ>= ` 0 ) | 
						
							| 127 | 126 78 | sselid |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 128 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 130 | 103 129 | ffvelcdmd |  |-  ( ph -> ( Q ` 0 ) e. H ) | 
						
							| 131 | 99 130 | sseldd |  |-  ( ph -> ( Q ` 0 ) e. RR ) | 
						
							| 132 | 131 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) e. RR ) | 
						
							| 133 | 111 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` i ) e. RR ) | 
						
							| 134 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> 0 < i ) | 
						
							| 135 | 100 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) | 
						
							| 136 | 129 | anim1i |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) | 
						
							| 137 | 136 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) | 
						
							| 138 |  | isorel |  |-  ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) | 
						
							| 139 | 135 137 138 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) | 
						
							| 140 | 134 139 | mpbid |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) < ( Q ` i ) ) | 
						
							| 141 | 132 133 140 | ltled |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) | 
						
							| 142 | 123 141 | syldan |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) | 
						
							| 143 | 114 142 | pm2.61dan |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) | 
						
							| 144 | 143 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ ( Q ` i ) ) | 
						
							| 145 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` i ) = -u _pi ) | 
						
							| 146 | 144 145 | breqtrd |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ -u _pi ) | 
						
							| 147 | 79 | rexrd |  |-  ( ph -> -u _pi e. RR* ) | 
						
							| 148 | 80 | rexrd |  |-  ( ph -> _pi e. RR* ) | 
						
							| 149 |  | lbicc2 |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> -u _pi e. ( -u _pi [,] _pi ) ) | 
						
							| 150 | 26 27 33 149 | mp3an |  |-  -u _pi e. ( -u _pi [,] _pi ) | 
						
							| 151 | 150 | a1i |  |-  ( ph -> -u _pi e. ( -u _pi [,] _pi ) ) | 
						
							| 152 |  | ubicc2 |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> _pi e. ( -u _pi [,] _pi ) ) | 
						
							| 153 | 26 27 33 152 | mp3an |  |-  _pi e. ( -u _pi [,] _pi ) | 
						
							| 154 | 153 | a1i |  |-  ( ph -> _pi e. ( -u _pi [,] _pi ) ) | 
						
							| 155 |  | iocssicc |  |-  ( -u _pi (,] _pi ) C_ ( -u _pi [,] _pi ) | 
						
							| 156 | 155 88 | sselid |  |-  ( ph -> ( E ` X ) e. ( -u _pi [,] _pi ) ) | 
						
							| 157 |  | tpssi |  |-  ( ( -u _pi e. ( -u _pi [,] _pi ) /\ _pi e. ( -u _pi [,] _pi ) /\ ( E ` X ) e. ( -u _pi [,] _pi ) ) -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) | 
						
							| 158 | 151 154 156 157 | syl3anc |  |-  ( ph -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) | 
						
							| 159 |  | difssd |  |-  ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 160 | 158 159 | unssd |  |-  ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 161 | 17 160 | eqsstrid |  |-  ( ph -> H C_ ( -u _pi [,] _pi ) ) | 
						
							| 162 | 161 130 | sseldd |  |-  ( ph -> ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) | 
						
							| 163 |  | iccgelb |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) -> -u _pi <_ ( Q ` 0 ) ) | 
						
							| 164 | 147 148 162 163 | syl3anc |  |-  ( ph -> -u _pi <_ ( Q ` 0 ) ) | 
						
							| 165 | 164 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi <_ ( Q ` 0 ) ) | 
						
							| 166 | 131 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) e. RR ) | 
						
							| 167 | 25 | a1i |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi e. RR ) | 
						
							| 168 | 166 167 | letri3d |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( ( Q ` 0 ) = -u _pi <-> ( ( Q ` 0 ) <_ -u _pi /\ -u _pi <_ ( Q ` 0 ) ) ) ) | 
						
							| 169 | 146 165 168 | mpbir2and |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) = -u _pi ) | 
						
							| 170 | 68 62 | sselii |  |-  -u _pi e. H | 
						
							| 171 |  | f1ofo |  |-  ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) -onto-> H ) | 
						
							| 172 | 101 171 | syl |  |-  ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -onto-> H ) | 
						
							| 173 |  | forn |  |-  ( Q : ( 0 ... M ) -onto-> H -> ran Q = H ) | 
						
							| 174 | 100 172 173 | 3syl |  |-  ( ph -> ran Q = H ) | 
						
							| 175 | 170 174 | eleqtrrid |  |-  ( ph -> -u _pi e. ran Q ) | 
						
							| 176 |  | ffn |  |-  ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) ) | 
						
							| 177 |  | fvelrnb |  |-  ( Q Fn ( 0 ... M ) -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) | 
						
							| 178 | 103 176 177 | 3syl |  |-  ( ph -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) | 
						
							| 179 | 175 178 | mpbid |  |-  ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) | 
						
							| 180 | 169 179 | r19.29a |  |-  ( ph -> ( Q ` 0 ) = -u _pi ) | 
						
							| 181 | 68 64 | sselii |  |-  _pi e. H | 
						
							| 182 | 181 174 | eleqtrrid |  |-  ( ph -> _pi e. ran Q ) | 
						
							| 183 |  | fvelrnb |  |-  ( Q Fn ( 0 ... M ) -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) | 
						
							| 184 | 103 176 183 | 3syl |  |-  ( ph -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) | 
						
							| 185 | 182 184 | mpbid |  |-  ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) | 
						
							| 186 | 103 161 | fssd |  |-  ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 187 |  | eluzfz2 |  |-  ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) | 
						
							| 188 | 127 187 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 189 | 186 188 | ffvelcdmd |  |-  ( ph -> ( Q ` M ) e. ( -u _pi [,] _pi ) ) | 
						
							| 190 |  | iccleub |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` M ) e. ( -u _pi [,] _pi ) ) -> ( Q ` M ) <_ _pi ) | 
						
							| 191 | 147 148 189 190 | syl3anc |  |-  ( ph -> ( Q ` M ) <_ _pi ) | 
						
							| 192 | 191 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) <_ _pi ) | 
						
							| 193 |  | id |  |-  ( ( Q ` i ) = _pi -> ( Q ` i ) = _pi ) | 
						
							| 194 | 193 | eqcomd |  |-  ( ( Q ` i ) = _pi -> _pi = ( Q ` i ) ) | 
						
							| 195 | 194 | 3ad2ant3 |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi = ( Q ` i ) ) | 
						
							| 196 | 112 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` i ) ) | 
						
							| 197 |  | fveq2 |  |-  ( i = M -> ( Q ` i ) = ( Q ` M ) ) | 
						
							| 198 | 197 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) = ( Q ` M ) ) | 
						
							| 199 | 196 198 | breqtrd |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) | 
						
							| 200 | 116 | ad2antlr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i e. RR ) | 
						
							| 201 |  | elfzel2 |  |-  ( i e. ( 0 ... M ) -> M e. ZZ ) | 
						
							| 202 | 201 | zred |  |-  ( i e. ( 0 ... M ) -> M e. RR ) | 
						
							| 203 | 202 | ad2antlr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M e. RR ) | 
						
							| 204 |  | elfzle2 |  |-  ( i e. ( 0 ... M ) -> i <_ M ) | 
						
							| 205 | 204 | ad2antlr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i <_ M ) | 
						
							| 206 |  | neqne |  |-  ( -. i = M -> i =/= M ) | 
						
							| 207 | 206 | necomd |  |-  ( -. i = M -> M =/= i ) | 
						
							| 208 | 207 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M =/= i ) | 
						
							| 209 | 200 203 205 208 | leneltd |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i < M ) | 
						
							| 210 | 111 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) e. RR ) | 
						
							| 211 | 95 189 | sselid |  |-  ( ph -> ( Q ` M ) e. RR ) | 
						
							| 212 | 211 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` M ) e. RR ) | 
						
							| 213 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> i < M ) | 
						
							| 214 | 100 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) | 
						
							| 215 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 216 | 188 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( 0 ... M ) ) | 
						
							| 217 | 215 216 | jca |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) | 
						
							| 218 | 217 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) | 
						
							| 219 |  | isorel |  |-  ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) | 
						
							| 220 | 214 218 219 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) | 
						
							| 221 | 213 220 | mpbid |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) < ( Q ` M ) ) | 
						
							| 222 | 210 212 221 | ltled |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) <_ ( Q ` M ) ) | 
						
							| 223 | 209 222 | syldan |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) | 
						
							| 224 | 199 223 | pm2.61dan |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) | 
						
							| 225 | 224 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` i ) <_ ( Q ` M ) ) | 
						
							| 226 | 195 225 | eqbrtrd |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi <_ ( Q ` M ) ) | 
						
							| 227 | 211 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) e. RR ) | 
						
							| 228 | 24 | a1i |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi e. RR ) | 
						
							| 229 | 227 228 | letri3d |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( ( Q ` M ) = _pi <-> ( ( Q ` M ) <_ _pi /\ _pi <_ ( Q ` M ) ) ) ) | 
						
							| 230 | 192 226 229 | mpbir2and |  |-  ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) = _pi ) | 
						
							| 231 | 230 | rexlimdv3a |  |-  ( ph -> ( E. i e. ( 0 ... M ) ( Q ` i ) = _pi -> ( Q ` M ) = _pi ) ) | 
						
							| 232 | 185 231 | mpd |  |-  ( ph -> ( Q ` M ) = _pi ) | 
						
							| 233 |  | elfzoelz |  |-  ( i e. ( 0 ..^ M ) -> i e. ZZ ) | 
						
							| 234 | 233 | zred |  |-  ( i e. ( 0 ..^ M ) -> i e. RR ) | 
						
							| 235 | 234 | ltp1d |  |-  ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) | 
						
							| 236 | 235 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i < ( i + 1 ) ) | 
						
							| 237 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 238 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 239 | 237 238 | jca |  |-  ( i e. ( 0 ..^ M ) -> ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) | 
						
							| 240 |  | isorel |  |-  ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 241 | 100 239 240 | syl2an |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 242 | 236 241 | mpbid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 243 | 242 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 244 | 180 232 243 | jca31 |  |-  ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 245 | 15 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 246 | 78 245 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 247 | 108 244 246 | mpbir2and |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 248 | 4 | reseq1i |  |-  ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 249 | 26 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) | 
						
							| 250 | 27 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) | 
						
							| 251 | 186 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 252 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 253 | 249 250 251 252 | fourierdlem27 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi (,) _pi ) ) | 
						
							| 254 | 253 | resabs1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 255 | 248 254 | eqtr2id |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 256 | 6 15 78 247 17 174 | fourierdlem38 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 257 | 255 256 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 258 | 255 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 259 | 6 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( dom G -cn-> CC ) ) | 
						
							| 260 | 7 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) | 
						
							| 261 | 8 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) | 
						
							| 262 | 100 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) | 
						
							| 263 | 262 101 102 | 3syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> H ) | 
						
							| 264 | 89 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) e. RR ) | 
						
							| 265 | 262 172 173 | 3syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran Q = H ) | 
						
							| 266 | 259 260 261 262 263 252 242 253 264 17 265 | fourierdlem46 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) /\ ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) ) | 
						
							| 267 | 266 | simpld |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 268 | 258 267 | eqnetrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 269 | 255 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 270 | 266 | simprd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 271 | 269 270 | eqnetrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 272 | 91 | tpid3 |  |-  ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } | 
						
							| 273 |  | elun1 |  |-  ( ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) | 
						
							| 274 | 272 273 | mp1i |  |-  ( ph -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) | 
						
							| 275 | 274 17 | eleqtrrdi |  |-  ( ph -> ( E ` X ) e. H ) | 
						
							| 276 | 275 174 | eleqtrrd |  |-  ( ph -> ( E ` X ) e. ran Q ) | 
						
							| 277 | 1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276 | fourierdlem113 |  |-  ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |