| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem114.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | fourierdlem114.t | ⊢ 𝑇  =  ( 2  ·  π ) | 
						
							| 3 |  | fourierdlem114.per | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 |  | fourierdlem114.g | ⊢ 𝐺  =  ( ( ℝ  D  𝐹 )  ↾  ( - π (,) π ) ) | 
						
							| 5 |  | fourierdlem114.dmdv | ⊢ ( 𝜑  →  ( ( - π (,) π )  ∖  dom  𝐺 )  ∈  Fin ) | 
						
							| 6 |  | fourierdlem114.gcn | ⊢ ( 𝜑  →  𝐺  ∈  ( dom  𝐺 –cn→ ℂ ) ) | 
						
							| 7 |  | fourierdlem114.rlim | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( - π [,) π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( 𝑥 (,) +∞ ) )  limℂ  𝑥 )  ≠  ∅ ) | 
						
							| 8 |  | fourierdlem114.llim | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( - π (,] π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( -∞ (,) 𝑥 ) )  limℂ  𝑥 )  ≠  ∅ ) | 
						
							| 9 |  | fourierdlem114.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 10 |  | fourierdlem114.l | ⊢ ( 𝜑  →  𝐿  ∈  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 11 |  | fourierdlem114.r | ⊢ ( 𝜑  →  𝑅  ∈  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) ) | 
						
							| 12 |  | fourierdlem114.a | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 13 |  | fourierdlem114.b | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 14 |  | fourierdlem114.s | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 15 |  | fourierdlem114.p | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 16 |  | fourierdlem114.e | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 17 |  | fourierdlem114.h | ⊢ 𝐻  =  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) | 
						
							| 18 |  | fourierdlem114.m | ⊢ 𝑀  =  ( ( ♯ ‘ 𝐻 )  −  1 ) | 
						
							| 19 |  | fourierdlem114.q | ⊢ 𝑄  =  ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 ) ) | 
						
							| 20 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 22 |  | tpfi | ⊢ { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∈  Fin | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∈  Fin ) | 
						
							| 24 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 25 | 24 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 26 | 25 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 27 | 24 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 28 |  | negpilt0 | ⊢ - π  <  0 | 
						
							| 29 |  | pipos | ⊢ 0  <  π | 
						
							| 30 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 31 | 25 30 24 | lttri | ⊢ ( ( - π  <  0  ∧  0  <  π )  →  - π  <  π ) | 
						
							| 32 | 28 29 31 | mp2an | ⊢ - π  <  π | 
						
							| 33 | 25 24 32 | ltleii | ⊢ - π  ≤  π | 
						
							| 34 |  | prunioo | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  - π  ≤  π )  →  ( ( - π (,) π )  ∪  { - π ,  π } )  =  ( - π [,] π ) ) | 
						
							| 35 | 26 27 33 34 | mp3an | ⊢ ( ( - π (,) π )  ∪  { - π ,  π } )  =  ( - π [,] π ) | 
						
							| 36 | 35 | difeq1i | ⊢ ( ( ( - π (,) π )  ∪  { - π ,  π } )  ∖  dom  𝐺 )  =  ( ( - π [,] π )  ∖  dom  𝐺 ) | 
						
							| 37 |  | difundir | ⊢ ( ( ( - π (,) π )  ∪  { - π ,  π } )  ∖  dom  𝐺 )  =  ( ( ( - π (,) π )  ∖  dom  𝐺 )  ∪  ( { - π ,  π }  ∖  dom  𝐺 ) ) | 
						
							| 38 | 36 37 | eqtr3i | ⊢ ( ( - π [,] π )  ∖  dom  𝐺 )  =  ( ( ( - π (,) π )  ∖  dom  𝐺 )  ∪  ( { - π ,  π }  ∖  dom  𝐺 ) ) | 
						
							| 39 |  | prfi | ⊢ { - π ,  π }  ∈  Fin | 
						
							| 40 |  | diffi | ⊢ ( { - π ,  π }  ∈  Fin  →  ( { - π ,  π }  ∖  dom  𝐺 )  ∈  Fin ) | 
						
							| 41 | 39 40 | mp1i | ⊢ ( 𝜑  →  ( { - π ,  π }  ∖  dom  𝐺 )  ∈  Fin ) | 
						
							| 42 |  | unfi | ⊢ ( ( ( ( - π (,) π )  ∖  dom  𝐺 )  ∈  Fin  ∧  ( { - π ,  π }  ∖  dom  𝐺 )  ∈  Fin )  →  ( ( ( - π (,) π )  ∖  dom  𝐺 )  ∪  ( { - π ,  π }  ∖  dom  𝐺 ) )  ∈  Fin ) | 
						
							| 43 | 5 41 42 | syl2anc | ⊢ ( 𝜑  →  ( ( ( - π (,) π )  ∖  dom  𝐺 )  ∪  ( { - π ,  π }  ∖  dom  𝐺 ) )  ∈  Fin ) | 
						
							| 44 | 38 43 | eqeltrid | ⊢ ( 𝜑  →  ( ( - π [,] π )  ∖  dom  𝐺 )  ∈  Fin ) | 
						
							| 45 |  | unfi | ⊢ ( ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∈  Fin  ∧  ( ( - π [,] π )  ∖  dom  𝐺 )  ∈  Fin )  →  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  ∈  Fin ) | 
						
							| 46 | 23 44 45 | syl2anc | ⊢ ( 𝜑  →  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  ∈  Fin ) | 
						
							| 47 | 17 46 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  Fin ) | 
						
							| 48 |  | hashcl | ⊢ ( 𝐻  ∈  Fin  →  ( ♯ ‘ 𝐻 )  ∈  ℕ0 ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  ∈  ℤ ) | 
						
							| 51 | 25 32 | ltneii | ⊢ - π  ≠  π | 
						
							| 52 |  | hashprg | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - π  ≠  π  ↔  ( ♯ ‘ { - π ,  π } )  =  2 ) ) | 
						
							| 53 | 25 24 52 | mp2an | ⊢ ( - π  ≠  π  ↔  ( ♯ ‘ { - π ,  π } )  =  2 ) | 
						
							| 54 | 51 53 | mpbi | ⊢ ( ♯ ‘ { - π ,  π } )  =  2 | 
						
							| 55 | 22 | elexi | ⊢ { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∈  V | 
						
							| 56 |  | ovex | ⊢ ( - π [,] π )  ∈  V | 
						
							| 57 |  | difexg | ⊢ ( ( - π [,] π )  ∈  V  →  ( ( - π [,] π )  ∖  dom  𝐺 )  ∈  V ) | 
						
							| 58 | 56 57 | ax-mp | ⊢ ( ( - π [,] π )  ∖  dom  𝐺 )  ∈  V | 
						
							| 59 | 55 58 | unex | ⊢ ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  ∈  V | 
						
							| 60 | 17 59 | eqeltri | ⊢ 𝐻  ∈  V | 
						
							| 61 |  | negex | ⊢ - π  ∈  V | 
						
							| 62 | 61 | tpid1 | ⊢ - π  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } | 
						
							| 63 | 24 | elexi | ⊢ π  ∈  V | 
						
							| 64 | 63 | tpid2 | ⊢ π  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } | 
						
							| 65 |  | prssi | ⊢ ( ( - π  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∧  π  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } )  →  { - π ,  π }  ⊆  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } ) | 
						
							| 66 | 62 64 65 | mp2an | ⊢ { - π ,  π }  ⊆  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } | 
						
							| 67 |  | ssun1 | ⊢ { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) | 
						
							| 68 | 67 17 | sseqtrri | ⊢ { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  𝐻 | 
						
							| 69 | 66 68 | sstri | ⊢ { - π ,  π }  ⊆  𝐻 | 
						
							| 70 |  | hashss | ⊢ ( ( 𝐻  ∈  V  ∧  { - π ,  π }  ⊆  𝐻 )  →  ( ♯ ‘ { - π ,  π } )  ≤  ( ♯ ‘ 𝐻 ) ) | 
						
							| 71 | 60 69 70 | mp2an | ⊢ ( ♯ ‘ { - π ,  π } )  ≤  ( ♯ ‘ 𝐻 ) | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ { - π ,  π } )  ≤  ( ♯ ‘ 𝐻 ) ) | 
						
							| 73 | 54 72 | eqbrtrrid | ⊢ ( 𝜑  →  2  ≤  ( ♯ ‘ 𝐻 ) ) | 
						
							| 74 |  | eluz2 | ⊢ ( ( ♯ ‘ 𝐻 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( ♯ ‘ 𝐻 )  ∈  ℤ  ∧  2  ≤  ( ♯ ‘ 𝐻 ) ) ) | 
						
							| 75 | 21 50 73 74 | syl3anbrc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 76 |  | uz2m1nn | ⊢ ( ( ♯ ‘ 𝐻 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ♯ ‘ 𝐻 )  −  1 )  ∈  ℕ ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐻 )  −  1 )  ∈  ℕ ) | 
						
							| 78 | 18 77 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 79 | 25 | a1i | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 80 | 24 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 81 |  | negpitopissre | ⊢ ( - π (,] π )  ⊆  ℝ | 
						
							| 82 | 32 | a1i | ⊢ ( 𝜑  →  - π  <  π ) | 
						
							| 83 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 84 | 83 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 85 | 83 83 | subnegi | ⊢ ( π  −  - π )  =  ( π  +  π ) | 
						
							| 86 | 84 2 85 | 3eqtr4i | ⊢ 𝑇  =  ( π  −  - π ) | 
						
							| 87 | 79 80 82 86 16 | fourierdlem4 | ⊢ ( 𝜑  →  𝐸 : ℝ ⟶ ( - π (,] π ) ) | 
						
							| 88 | 87 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ( - π (,] π ) ) | 
						
							| 89 | 81 88 | sselid | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 90 | 79 80 89 | 3jca | ⊢ ( 𝜑  →  ( - π  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) ) | 
						
							| 91 |  | fvex | ⊢ ( 𝐸 ‘ 𝑋 )  ∈  V | 
						
							| 92 | 61 63 91 | tpss | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ )  ↔  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  ℝ ) | 
						
							| 93 | 90 92 | sylib | ⊢ ( 𝜑  →  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  ℝ ) | 
						
							| 94 |  | iccssre | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - π [,] π )  ⊆  ℝ ) | 
						
							| 95 | 25 24 94 | mp2an | ⊢ ( - π [,] π )  ⊆  ℝ | 
						
							| 96 |  | ssdifss | ⊢ ( ( - π [,] π )  ⊆  ℝ  →  ( ( - π [,] π )  ∖  dom  𝐺 )  ⊆  ℝ ) | 
						
							| 97 | 95 96 | mp1i | ⊢ ( 𝜑  →  ( ( - π [,] π )  ∖  dom  𝐺 )  ⊆  ℝ ) | 
						
							| 98 | 93 97 | unssd | ⊢ ( 𝜑  →  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  ⊆  ℝ ) | 
						
							| 99 | 17 98 | eqsstrid | ⊢ ( 𝜑  →  𝐻  ⊆  ℝ ) | 
						
							| 100 | 47 99 19 18 | fourierdlem36 | ⊢ ( 𝜑  →  𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 ) ) | 
						
							| 101 |  | isof1o | ⊢ ( 𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 )  →  𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 ) | 
						
							| 102 |  | f1of | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻  →  𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) | 
						
							| 103 | 100 101 102 | 3syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) | 
						
							| 104 | 103 99 | fssd | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 105 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 106 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 107 | 105 106 | elmap | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 108 | 104 107 | sylibr | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 109 |  | fveq2 | ⊢ ( 0  =  𝑖  →  ( 𝑄 ‘ 0 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  =  𝑖 )  →  ( 𝑄 ‘ 0 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 111 | 104 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 112 | 111 | leidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  =  𝑖 )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 114 | 110 113 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  =  𝑖 )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 115 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 116 | 115 | zred | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  0  =  𝑖 )  →  𝑖  ∈  ℝ ) | 
						
							| 118 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  0  ≤  𝑖 ) | 
						
							| 119 | 118 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  0  =  𝑖 )  →  0  ≤  𝑖 ) | 
						
							| 120 |  | neqne | ⊢ ( ¬  0  =  𝑖  →  0  ≠  𝑖 ) | 
						
							| 121 | 120 | necomd | ⊢ ( ¬  0  =  𝑖  →  𝑖  ≠  0 ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  0  =  𝑖 )  →  𝑖  ≠  0 ) | 
						
							| 123 | 117 119 122 | ne0gt0d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  0  =  𝑖 )  →  0  <  𝑖 ) | 
						
							| 124 |  | nnssnn0 | ⊢ ℕ  ⊆  ℕ0 | 
						
							| 125 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 126 | 124 125 | sseqtri | ⊢ ℕ  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 127 | 126 78 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 128 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 129 | 127 128 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 130 | 103 129 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  𝐻 ) | 
						
							| 131 | 99 130 | sseldd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 132 | 131 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 133 | 111 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 134 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  0  <  𝑖 ) | 
						
							| 135 | 100 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 ) ) | 
						
							| 136 | 129 | anim1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 0  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 0  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 138 |  | isorel | ⊢ ( ( 𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 )  ∧  ( 0  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑀 ) ) )  →  ( 0  <  𝑖  ↔  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 139 | 135 137 138 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 0  <  𝑖  ↔  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 140 | 134 139 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 𝑄 ‘ 0 )  <  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 141 | 132 133 140 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  0  <  𝑖 )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 142 | 123 141 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  0  =  𝑖 )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 143 | 114 142 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( 𝑄 ‘ 0 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 145 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( 𝑄 ‘ 𝑖 )  =  - π ) | 
						
							| 146 | 144 145 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( 𝑄 ‘ 0 )  ≤  - π ) | 
						
							| 147 | 79 | rexrd | ⊢ ( 𝜑  →  - π  ∈  ℝ* ) | 
						
							| 148 | 80 | rexrd | ⊢ ( 𝜑  →  π  ∈  ℝ* ) | 
						
							| 149 |  | lbicc2 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  - π  ≤  π )  →  - π  ∈  ( - π [,] π ) ) | 
						
							| 150 | 26 27 33 149 | mp3an | ⊢ - π  ∈  ( - π [,] π ) | 
						
							| 151 | 150 | a1i | ⊢ ( 𝜑  →  - π  ∈  ( - π [,] π ) ) | 
						
							| 152 |  | ubicc2 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  - π  ≤  π )  →  π  ∈  ( - π [,] π ) ) | 
						
							| 153 | 26 27 33 152 | mp3an | ⊢ π  ∈  ( - π [,] π ) | 
						
							| 154 | 153 | a1i | ⊢ ( 𝜑  →  π  ∈  ( - π [,] π ) ) | 
						
							| 155 |  | iocssicc | ⊢ ( - π (,] π )  ⊆  ( - π [,] π ) | 
						
							| 156 | 155 88 | sselid | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ( - π [,] π ) ) | 
						
							| 157 |  | tpssi | ⊢ ( ( - π  ∈  ( - π [,] π )  ∧  π  ∈  ( - π [,] π )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( - π [,] π ) )  →  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  ( - π [,] π ) ) | 
						
							| 158 | 151 154 156 157 | syl3anc | ⊢ ( 𝜑  →  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ⊆  ( - π [,] π ) ) | 
						
							| 159 |  | difssd | ⊢ ( 𝜑  →  ( ( - π [,] π )  ∖  dom  𝐺 )  ⊆  ( - π [,] π ) ) | 
						
							| 160 | 158 159 | unssd | ⊢ ( 𝜑  →  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) )  ⊆  ( - π [,] π ) ) | 
						
							| 161 | 17 160 | eqsstrid | ⊢ ( 𝜑  →  𝐻  ⊆  ( - π [,] π ) ) | 
						
							| 162 | 161 130 | sseldd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ( - π [,] π ) ) | 
						
							| 163 |  | iccgelb | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  ( 𝑄 ‘ 0 )  ∈  ( - π [,] π ) )  →  - π  ≤  ( 𝑄 ‘ 0 ) ) | 
						
							| 164 | 147 148 162 163 | syl3anc | ⊢ ( 𝜑  →  - π  ≤  ( 𝑄 ‘ 0 ) ) | 
						
							| 165 | 164 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  - π  ≤  ( 𝑄 ‘ 0 ) ) | 
						
							| 166 | 131 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 167 | 25 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  - π  ∈  ℝ ) | 
						
							| 168 | 166 167 | letri3d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( ( 𝑄 ‘ 0 )  =  - π  ↔  ( ( 𝑄 ‘ 0 )  ≤  - π  ∧  - π  ≤  ( 𝑄 ‘ 0 ) ) ) ) | 
						
							| 169 | 146 165 168 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  - π )  →  ( 𝑄 ‘ 0 )  =  - π ) | 
						
							| 170 | 68 62 | sselii | ⊢ - π  ∈  𝐻 | 
						
							| 171 |  | f1ofo | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻  →  𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) | 
						
							| 172 | 101 171 | syl | ⊢ ( 𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 )  →  𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) | 
						
							| 173 |  | forn | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻  →  ran  𝑄  =  𝐻 ) | 
						
							| 174 | 100 172 173 | 3syl | ⊢ ( 𝜑  →  ran  𝑄  =  𝐻 ) | 
						
							| 175 | 170 174 | eleqtrrid | ⊢ ( 𝜑  →  - π  ∈  ran  𝑄 ) | 
						
							| 176 |  | ffn | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 177 |  | fvelrnb | ⊢ ( 𝑄  Fn  ( 0 ... 𝑀 )  →  ( - π  ∈  ran  𝑄  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  - π ) ) | 
						
							| 178 | 103 176 177 | 3syl | ⊢ ( 𝜑  →  ( - π  ∈  ran  𝑄  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  - π ) ) | 
						
							| 179 | 175 178 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  - π ) | 
						
							| 180 | 169 179 | r19.29a | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  - π ) | 
						
							| 181 | 68 64 | sselii | ⊢ π  ∈  𝐻 | 
						
							| 182 | 181 174 | eleqtrrid | ⊢ ( 𝜑  →  π  ∈  ran  𝑄 ) | 
						
							| 183 |  | fvelrnb | ⊢ ( 𝑄  Fn  ( 0 ... 𝑀 )  →  ( π  ∈  ran  𝑄  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  π ) ) | 
						
							| 184 | 103 176 183 | 3syl | ⊢ ( 𝜑  →  ( π  ∈  ran  𝑄  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  π ) ) | 
						
							| 185 | 182 184 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  π ) | 
						
							| 186 | 103 161 | fssd | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 187 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 188 | 127 187 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 189 | 186 188 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ( - π [,] π ) ) | 
						
							| 190 |  | iccleub | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑀 )  ∈  ( - π [,] π ) )  →  ( 𝑄 ‘ 𝑀 )  ≤  π ) | 
						
							| 191 | 147 148 189 190 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ≤  π ) | 
						
							| 192 | 191 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  ( 𝑄 ‘ 𝑀 )  ≤  π ) | 
						
							| 193 |  | id | ⊢ ( ( 𝑄 ‘ 𝑖 )  =  π  →  ( 𝑄 ‘ 𝑖 )  =  π ) | 
						
							| 194 | 193 | eqcomd | ⊢ ( ( 𝑄 ‘ 𝑖 )  =  π  →  π  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 195 | 194 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  π  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 196 | 112 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  =  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 197 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 198 | 197 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  =  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 199 | 196 198 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  =  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 200 | 116 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 201 |  | elfzel2 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 202 | 201 | zred | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 203 | 202 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 204 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 205 | 204 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 206 |  | neqne | ⊢ ( ¬  𝑖  =  𝑀  →  𝑖  ≠  𝑀 ) | 
						
							| 207 | 206 | necomd | ⊢ ( ¬  𝑖  =  𝑀  →  𝑀  ≠  𝑖 ) | 
						
							| 208 | 207 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  𝑀  ≠  𝑖 ) | 
						
							| 209 | 200 203 205 208 | leneltd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  𝑖  <  𝑀 ) | 
						
							| 210 | 111 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 211 | 95 189 | sselid | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 212 | 211 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 213 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  𝑖  <  𝑀 ) | 
						
							| 214 | 100 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 ) ) | 
						
							| 215 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 216 | 188 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 217 | 215 216 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑀  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 218 | 217 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑀  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 219 |  | isorel | ⊢ ( ( 𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 )  ∧  ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  𝑀  ∈  ( 0 ... 𝑀 ) ) )  →  ( 𝑖  <  𝑀  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 220 | 214 218 219 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑖  <  𝑀  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 221 | 213 220 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 222 | 210 212 221 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  <  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 223 | 209 222 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑖  =  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 224 | 199 223 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 225 | 224 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 226 | 195 225 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  π  ≤  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 227 | 211 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 228 | 24 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  π  ∈  ℝ ) | 
						
							| 229 | 227 228 | letri3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  ( ( 𝑄 ‘ 𝑀 )  =  π  ↔  ( ( 𝑄 ‘ 𝑀 )  ≤  π  ∧  π  ≤  ( 𝑄 ‘ 𝑀 ) ) ) ) | 
						
							| 230 | 192 226 229 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑄 ‘ 𝑖 )  =  π )  →  ( 𝑄 ‘ 𝑀 )  =  π ) | 
						
							| 231 | 230 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 )  =  π  →  ( 𝑄 ‘ 𝑀 )  =  π ) ) | 
						
							| 232 | 185 231 | mpd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  π ) | 
						
							| 233 |  | elfzoelz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 234 | 233 | zred | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 235 | 234 | ltp1d | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  <  ( 𝑖  +  1 ) ) | 
						
							| 236 | 235 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  <  ( 𝑖  +  1 ) ) | 
						
							| 237 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 238 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 239 | 237 238 | jca | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 240 |  | isorel | ⊢ ( ( 𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 )  ∧  ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) )  →  ( 𝑖  <  ( 𝑖  +  1 )  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 241 | 100 239 240 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  <  ( 𝑖  +  1 )  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 242 | 236 241 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 243 | 242 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 244 | 180 232 243 | jca31 | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 245 | 15 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 246 | 78 245 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 247 | 108 244 246 | mpbir2and | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 248 | 4 | reseq1i | ⊢ ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( - π (,) π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 249 | 26 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  - π  ∈  ℝ* ) | 
						
							| 250 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  π  ∈  ℝ* ) | 
						
							| 251 | 186 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 252 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 253 | 249 250 251 252 | fourierdlem27 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π (,) π ) ) | 
						
							| 254 | 253 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( - π (,) π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 255 | 248 254 | eqtr2id | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 256 | 6 15 78 247 17 174 | fourierdlem38 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 257 | 255 256 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 258 | 255 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 259 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐺  ∈  ( dom  𝐺 –cn→ ℂ ) ) | 
						
							| 260 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( - π [,) π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( 𝑥 (,) +∞ ) )  limℂ  𝑥 )  ≠  ∅ ) | 
						
							| 261 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( - π (,] π )  ∖  dom  𝐺 ) )  →  ( ( 𝐺  ↾  ( -∞ (,) 𝑥 ) )  limℂ  𝑥 )  ≠  ∅ ) | 
						
							| 262 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄  Isom   <  ,   <  ( ( 0 ... 𝑀 ) ,  𝐻 ) ) | 
						
							| 263 | 262 101 102 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) | 
						
							| 264 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 265 | 262 172 173 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ran  𝑄  =  𝐻 ) | 
						
							| 266 | 259 260 261 262 263 252 242 253 264 17 265 | fourierdlem46 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅  ∧  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) ) | 
						
							| 267 | 266 | simpld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 268 | 258 267 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 269 | 255 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 270 | 266 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 271 | 269 270 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 272 | 91 | tpid3 | ⊢ ( 𝐸 ‘ 𝑋 )  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) } | 
						
							| 273 |  | elun1 | ⊢ ( ( 𝐸 ‘ 𝑋 )  ∈  { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  →  ( 𝐸 ‘ 𝑋 )  ∈  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) ) | 
						
							| 274 | 272 273 | mp1i | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ( { - π ,  π ,  ( 𝐸 ‘ 𝑋 ) }  ∪  ( ( - π [,] π )  ∖  dom  𝐺 ) ) ) | 
						
							| 275 | 274 17 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  𝐻 ) | 
						
							| 276 | 275 174 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 ) | 
						
							| 277 | 1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276 | fourierdlem113 | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝑆 )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  ∧  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( 𝐿  +  𝑅 )  /  2 ) ) ) |