| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem113.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | fourierdlem113.t | ⊢ 𝑇  =  ( 2  ·  π ) | 
						
							| 3 |  | fourierdlem113.per | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 |  | fourierdlem113.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 5 |  | fourierdlem113.l | ⊢ ( 𝜑  →  𝐿  ∈  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 6 |  | fourierdlem113.r | ⊢ ( 𝜑  →  𝑅  ∈  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) ) | 
						
							| 7 |  | fourierdlem113.p | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 8 |  | fourierdlem113.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 9 |  | fourierdlem113.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 10 |  | fourierdlem113.dvcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 11 |  | fourierdlem113.dvlb | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 12 |  | fourierdlem113.dvub | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 13 |  | fourierdlem113.a | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 14 |  | fourierdlem113.b | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 15 |  | fourierdlem113.15 | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 16 |  | fourierdlem113.e | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 17 |  | fourierdlem113.exq | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  mod  ( 2  ·  π ) )  =  ( 𝑦  mod  ( 2  ·  π ) ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  mod  ( 2  ·  π ) )  =  0  ↔  ( 𝑦  mod  ( 2  ·  π ) )  =  0 ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 )  =  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  =  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  /  2 )  =  ( 𝑦  /  2 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( sin ‘ ( 𝑤  /  2 ) )  =  ( sin ‘ ( 𝑦  /  2 ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑤  =  𝑦  →  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) )  =  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) | 
						
							| 25 | 21 24 | oveq12d | ⊢ ( 𝑤  =  𝑦  →  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) | 
						
							| 26 | 19 25 | ifbieq2d | ⊢ ( 𝑤  =  𝑦  →  if ( ( 𝑤  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) ) ) )  =  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) | 
						
							| 27 | 26 | cbvmptv | ⊢ ( 𝑤  ∈  ℝ  ↦  if ( ( 𝑤  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) ) ) ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑚 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑚 )  +  1 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) )  =  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  +  ( 1  /  2 ) )  =  ( 𝑚  +  ( 1  /  2 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 )  =  ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( 𝑘  =  𝑚  →  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  =  ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) | 
						
							| 35 | 30 34 | ifeq12d | ⊢ ( 𝑘  =  𝑚  →  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) )  =  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) | 
						
							| 36 | 35 | mpteq2dv | ⊢ ( 𝑘  =  𝑚  →  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 37 | 27 36 | eqtrid | ⊢ ( 𝑘  =  𝑚  →  ( 𝑤  ∈  ℝ  ↦  if ( ( 𝑤  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) ) ) ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 38 | 37 | cbvmptv | ⊢ ( 𝑘  ∈  ℕ  ↦  ( 𝑤  ∈  ℝ  ↦  if ( ( 𝑤  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑤 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑤  /  2 ) ) ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑗  ·  𝑇 ) ) ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 41 | 40 | rexbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 42 | 41 | cbvrabv | ⊢ { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 43 | 42 | uneq2i | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 44 | 43 | fveq2i | ⊢ ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  =  ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) | 
						
							| 45 | 44 | oveq1i | ⊢ ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 46 |  | oveq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ·  𝑇 )  =  ( 𝑗  ·  𝑇 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑗  ·  𝑇 ) ) ) | 
						
							| 48 | 47 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 51 | 50 | rabbiia | ⊢ { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 52 | 51 | uneq2i | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 53 |  | isoeq5 | ⊢ ( ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 55 | 54 | a1i | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 56 | 46 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑤  +  ( 𝑗  ·  𝑇 ) ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 58 | 57 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 59 | 58 | a1i | ⊢ ( 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 60 | 59 | rabbiia | ⊢ { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 61 | 60 | uneq2i | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 62 | 61 | fveq2i | ⊢ ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  =  ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) | 
						
							| 63 | 62 | oveq1i | ⊢ ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 64 | 63 | oveq2i | ⊢ ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) )  =  ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) | 
						
							| 65 |  | isoeq4 | ⊢ ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) )  =  ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) )  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 67 | 66 | a1i | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 68 |  | isoeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 69 | 55 67 68 | 3bitrd | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 70 | 69 | cbviotavw | ⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑤  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑗  ∈  ℤ ( 𝑦  +  ( 𝑗  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 71 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 72 | 71 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 73 | 72 | a1i | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 74 | 71 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 75 |  | negpilt0 | ⊢ - π  <  0 | 
						
							| 76 | 75 | a1i | ⊢ ( 𝜑  →  - π  <  0 ) | 
						
							| 77 |  | pipos | ⊢ 0  <  π | 
						
							| 78 | 77 | a1i | ⊢ ( 𝜑  →  0  <  π ) | 
						
							| 79 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 80 | 79 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 81 | 79 79 | subnegi | ⊢ ( π  −  - π )  =  ( π  +  π ) | 
						
							| 82 | 80 2 81 | 3eqtr4i | ⊢ 𝑇  =  ( π  −  - π ) | 
						
							| 83 | 7 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 84 | 8 83 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 85 | 9 84 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 86 | 85 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 87 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 88 | 86 87 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 89 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 90 |  | rnffi | ⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ  ∧  ( 0 ... 𝑀 )  ∈  Fin )  →  ran  𝑄  ∈  Fin ) | 
						
							| 91 | 88 89 90 | syl2anc | ⊢ ( 𝜑  →  ran  𝑄  ∈  Fin ) | 
						
							| 92 | 7 8 9 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 93 |  | frn | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π )  →  ran  𝑄  ⊆  ( - π [,] π ) ) | 
						
							| 94 | 92 93 | syl | ⊢ ( 𝜑  →  ran  𝑄  ⊆  ( - π [,] π ) ) | 
						
							| 95 | 85 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 96 | 95 | simplrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  π ) | 
						
							| 97 |  | ffun | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π )  →  Fun  𝑄 ) | 
						
							| 98 | 92 97 | syl | ⊢ ( 𝜑  →  Fun  𝑄 ) | 
						
							| 99 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 100 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 101 | 99 100 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 102 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 104 |  | fdm | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π )  →  dom  𝑄  =  ( 0 ... 𝑀 ) ) | 
						
							| 105 | 92 104 | syl | ⊢ ( 𝜑  →  dom  𝑄  =  ( 0 ... 𝑀 ) ) | 
						
							| 106 | 105 | eqcomd | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  =  dom  𝑄 ) | 
						
							| 107 | 103 106 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  dom  𝑄 ) | 
						
							| 108 |  | fvelrn | ⊢ ( ( Fun  𝑄  ∧  𝑀  ∈  dom  𝑄 )  →  ( 𝑄 ‘ 𝑀 )  ∈  ran  𝑄 ) | 
						
							| 109 | 98 107 108 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ran  𝑄 ) | 
						
							| 110 | 96 109 | eqeltrrd | ⊢ ( 𝜑  →  π  ∈  ran  𝑄 ) | 
						
							| 111 |  | eqid | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 112 |  | isoeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 113 | 43 61 52 | 3eqtr4ri | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 114 |  | isoeq5 | ⊢ ( ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 115 | 113 114 | ax-mp | ⊢ ( 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 116 | 112 115 | bitrdi | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 117 | 116 | cbviotavw | ⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 118 |  | eqid | ⊢ { 𝑤  ∈  ( ( - π  +  𝑋 ) (,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑤  ∈  ( ( - π  +  𝑋 ) (,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 119 | 73 74 76 78 82 91 94 110 16 4 17 111 117 118 | fourierdlem51 | ⊢ ( 𝜑  →  𝑋  ∈  ran  ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑤  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 120 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 121 | 120 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 122 |  | ioossre | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 123 | 122 | a1i | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 124 | 1 123 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 125 | 120 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 126 | 124 125 | fssd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 128 | 122 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 129 | 1 125 | fssd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 131 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 132 | 131 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℝ ) | 
						
							| 133 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 134 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 135 | 133 134 | dvres | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : ℝ ⟶ ℂ )  ∧  ( ℝ  ⊆  ℝ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 136 | 121 130 132 128 135 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 137 | 136 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 138 |  | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 139 | 138 | reseq2i | ⊢ ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 140 | 139 | dmeqi | ⊢ dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 141 | 140 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 142 |  | cncff | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 143 |  | fdm | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 144 | 10 142 143 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 145 | 137 141 144 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 146 |  | dvcn | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  ∧  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 147 | 121 127 128 145 146 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 148 | 128 121 | sstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 149 | 88 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 150 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 152 | 149 151 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 153 | 152 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 154 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 155 | 154 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 156 | 149 155 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 157 | 85 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 158 | 157 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 159 | 133 153 156 158 | lptioo1cn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 160 | 124 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 161 | 131 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ ) | 
						
							| 162 | 125 129 161 | dvbss | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  ⊆  ℝ ) | 
						
							| 163 |  | dvfre | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 164 | 1 161 163 | syl2anc | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 165 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 166 | 72 165 71 | lttri | ⊢ ( ( - π  <  0  ∧  0  <  π )  →  - π  <  π ) | 
						
							| 167 | 75 77 166 | mp2an | ⊢ - π  <  π | 
						
							| 168 | 167 | a1i | ⊢ ( 𝜑  →  - π  <  π ) | 
						
							| 169 | 95 | simplld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  - π ) | 
						
							| 170 | 10 142 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 171 | 170 148 159 11 133 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 172 | 156 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 173 | 133 172 152 158 | lptioo2cn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 174 | 170 148 173 12 133 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 175 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 176 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ ) | 
						
							| 178 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 179 | 178 71 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 180 | 179 | a1i | ⊢ ( 𝜑  →  ( 2  ·  π )  ∈  ℝ ) | 
						
							| 181 | 2 180 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ ) | 
						
							| 183 | 177 182 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ ) | 
						
							| 184 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 185 | 182 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 186 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑘  ∈  ℤ ) | 
						
							| 187 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑡  ∈  ℝ ) | 
						
							| 188 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 189 | 184 185 186 187 188 | fperiodmul | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 190 |  | eqid | ⊢ ( ℝ  D  𝐹 )  =  ( ℝ  D  𝐹 ) | 
						
							| 191 | 175 183 189 190 | fperdvper | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 192 | 191 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 193 | 192 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 194 | 192 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 195 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 196 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  +  1 )  =  ( 𝑖  +  1 ) ) | 
						
							| 197 | 196 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 198 | 195 197 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 199 | 198 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 200 |  | eqid | ⊢ ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 201 | 162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200 | fourierdlem71 | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 203 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 204 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 | 
						
							| 205 | 203 204 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 206 | 136 139 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 207 | 206 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 208 |  | fvres | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 209 | 207 208 | sylan9eq | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 210 | 209 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 211 | 210 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 212 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 213 |  | ssdmres | ⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 214 | 144 213 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 215 | 214 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 216 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 217 | 215 216 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 218 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 219 | 212 217 218 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 220 | 211 219 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 221 | 220 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 222 | 205 221 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 223 | 222 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 224 | 223 | reximdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 225 | 202 224 | mpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 226 | 156 152 160 145 225 | ioodvbdlimc1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 227 | 127 148 159 226 133 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 228 | 156 152 160 145 225 | ioodvbdlimc2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 229 | 127 148 173 228 133 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 230 |  | frel | ⊢ ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ  →  Rel  ( ℝ  D  𝐹 ) ) | 
						
							| 231 | 164 230 | syl | ⊢ ( 𝜑  →  Rel  ( ℝ  D  𝐹 ) ) | 
						
							| 232 |  | resindm | ⊢ ( Rel  ( ℝ  D  𝐹 )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) ) ) | 
						
							| 233 | 231 232 | syl | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) ) ) | 
						
							| 234 |  | inss2 | ⊢ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  dom  ( ℝ  D  𝐹 ) | 
						
							| 235 | 234 | a1i | ⊢ ( 𝜑  →  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 236 | 164 235 | fssresd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) : ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℝ ) | 
						
							| 237 | 233 236 | feq1dd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) ) : ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℝ ) | 
						
							| 238 | 237 125 | fssd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) ) : ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℂ ) | 
						
							| 239 |  | ioosscn | ⊢ ( -∞ (,) 𝑋 )  ⊆  ℂ | 
						
							| 240 |  | ssinss1 | ⊢ ( ( -∞ (,) 𝑋 )  ⊆  ℂ  →  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 241 | 239 240 | ax-mp | ⊢ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ | 
						
							| 242 | 241 | a1i | ⊢ ( 𝜑  →  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 243 |  | 3simpb | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝜑  ∧  𝑘  ∈  ℤ ) ) | 
						
							| 244 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 )  ∧  𝑘  ∈  ℤ )  →  𝑥  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 245 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 246 | 182 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 247 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑘  ∈  ℤ ) | 
						
							| 248 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 249 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ℝ  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 250 | 249 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  𝑦  ∈  ℝ ) ) ) | 
						
							| 251 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  𝑇 )  =  ( 𝑦  +  𝑇 ) ) | 
						
							| 252 | 251 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) ) ) | 
						
							| 253 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 254 | 252 253 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 255 | 250 254 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 256 | 255 3 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 257 | 256 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 258 | 245 246 247 248 257 | fperiodmul | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 259 | 175 183 258 190 | fperdvper | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 260 | 243 244 259 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 261 | 260 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 262 |  | oveq2 | ⊢ ( 𝑤  =  𝑥  →  ( π  −  𝑤 )  =  ( π  −  𝑥 ) ) | 
						
							| 263 | 262 | oveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( π  −  𝑤 )  /  𝑇 )  =  ( ( π  −  𝑥 )  /  𝑇 ) ) | 
						
							| 264 | 263 | fveq2d | ⊢ ( 𝑤  =  𝑥  →  ( ⌊ ‘ ( ( π  −  𝑤 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) ) ) | 
						
							| 265 | 264 | oveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( ⌊ ‘ ( ( π  −  𝑤 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 266 | 265 | cbvmptv | ⊢ ( 𝑤  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 267 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( 𝑤  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( 𝑤  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) ) | 
						
							| 268 | 73 74 168 82 261 4 266 267 7 8 9 214 | fourierdlem41 | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  ∧  ∃ 𝑦  ∈  ℝ ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 269 | 268 | simpld | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) ) | 
						
							| 270 | 133 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 271 | 270 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 272 | 241 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 273 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 274 | 273 | a1i | ⊢ ( 𝑦  ∈  ℝ  →  -∞  ∈  ℝ* ) | 
						
							| 275 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 276 |  | mnflt | ⊢ ( 𝑦  ∈  ℝ  →  -∞  <  𝑦 ) | 
						
							| 277 | 274 275 276 | xrltled | ⊢ ( 𝑦  ∈  ℝ  →  -∞  ≤  𝑦 ) | 
						
							| 278 |  | iooss1 | ⊢ ( ( -∞  ∈  ℝ*  ∧  -∞  ≤  𝑦 )  →  ( 𝑦 (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 279 | 274 277 278 | syl2anc | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦 (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 280 | 279 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑦 (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 281 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 282 | 280 281 | ssind | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑦 (,) 𝑋 )  ⊆  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) | 
						
							| 283 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 284 | 283 | lpss3 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 285 | 271 272 282 284 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 286 | 285 | 3adant3l | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 287 | 275 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 288 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 289 |  | simp3l | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑦  <  𝑋 ) | 
						
							| 290 | 133 287 288 289 | lptioo2cn | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑦 (,) 𝑋 ) ) ) | 
						
							| 291 | 286 290 | sseldd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 292 | 291 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ( 𝑦  <  𝑋  ∧  ( 𝑦 (,) 𝑋 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) ) | 
						
							| 293 | 269 292 | mpd | ⊢ ( 𝜑  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( -∞ (,) 𝑋 )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 294 | 260 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( ℝ  D  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( ( ℝ  D  𝐹 ) ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 295 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( π  −  𝑦 )  =  ( π  −  𝑥 ) ) | 
						
							| 296 | 295 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( π  −  𝑦 )  /  𝑇 )  =  ( ( π  −  𝑥 )  /  𝑇 ) ) | 
						
							| 297 | 296 | fveq2d | ⊢ ( 𝑦  =  𝑥  →  ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) ) ) | 
						
							| 298 | 297 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 299 | 298 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 300 |  | id | ⊢ ( 𝑧  =  𝑥  →  𝑧  =  𝑥 ) | 
						
							| 301 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) | 
						
							| 302 | 300 301 | oveq12d | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) )  =  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) ) | 
						
							| 303 | 302 | cbvmptv | ⊢ ( 𝑧  ∈  ℝ  ↦  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) ) | 
						
							| 304 | 73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303 | fourierdlem49 | ⊢ ( 𝜑  →  ( ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅ ) | 
						
							| 305 | 238 242 293 304 133 | ellimciota | ⊢ ( 𝜑  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 306 |  | resindm | ⊢ ( Rel  ( ℝ  D  𝐹 )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) ) ) | 
						
							| 307 | 231 306 | syl | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) ) ) | 
						
							| 308 |  | inss2 | ⊢ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  dom  ( ℝ  D  𝐹 ) | 
						
							| 309 | 308 | a1i | ⊢ ( 𝜑  →  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 310 | 164 309 | fssresd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) : ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℝ ) | 
						
							| 311 | 307 310 | feq1dd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) ) : ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℝ ) | 
						
							| 312 | 311 125 | fssd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) ) : ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ⟶ ℂ ) | 
						
							| 313 |  | ioosscn | ⊢ ( 𝑋 (,) +∞ )  ⊆  ℂ | 
						
							| 314 |  | ssinss1 | ⊢ ( ( 𝑋 (,) +∞ )  ⊆  ℂ  →  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 315 | 313 314 | ax-mp | ⊢ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ | 
						
							| 316 | 315 | a1i | ⊢ ( 𝜑  →  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 317 | 268 | simprd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) ) | 
						
							| 318 | 270 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 319 | 315 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ ) | 
						
							| 320 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 321 | 320 | a1i | ⊢ ( 𝑦  ∈  ℝ  →  +∞  ∈  ℝ* ) | 
						
							| 322 |  | ltpnf | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  <  +∞ ) | 
						
							| 323 | 275 321 322 | xrltled | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ≤  +∞ ) | 
						
							| 324 |  | iooss2 | ⊢ ( ( +∞  ∈  ℝ*  ∧  𝑦  ≤  +∞ )  →  ( 𝑋 (,) 𝑦 )  ⊆  ( 𝑋 (,) +∞ ) ) | 
						
							| 325 | 321 323 324 | syl2anc | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑋 (,) 𝑦 )  ⊆  ( 𝑋 (,) +∞ ) ) | 
						
							| 326 | 325 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑋 (,) 𝑦 )  ⊆  ( 𝑋 (,) +∞ ) ) | 
						
							| 327 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 328 | 326 327 | ssind | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑋 (,) 𝑦 )  ⊆  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) | 
						
							| 329 | 283 | lpss3 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) )  ⊆  ℂ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 330 | 318 319 328 329 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 331 | 330 | 3adant3l | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) )  ⊆  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 332 | 275 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 333 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 334 |  | simp3l | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  <  𝑦 ) | 
						
							| 335 | 133 332 333 334 | lptioo1cn | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) 𝑦 ) ) ) | 
						
							| 336 | 331 335 | sseldd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ  ∧  ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 337 | 336 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ( 𝑋  <  𝑦  ∧  ( 𝑋 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) ) | 
						
							| 338 | 317 337 | mpd | ⊢ ( 𝜑  →  𝑋  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑋 (,) +∞ )  ∩  dom  ( ℝ  D  𝐹 ) ) ) ) | 
						
							| 339 |  | biid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) )  ↔  ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) ) ) | 
						
							| 340 | 73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339 | fourierdlem48 | ⊢ ( 𝜑  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ ) | 
						
							| 341 | 312 316 338 340 133 | ellimciota | ⊢ ( 𝜑  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) ) | 
						
							| 342 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 343 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ·  𝑋 )  =  ( 𝑘  ·  𝑋 ) ) | 
						
							| 344 | 343 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( cos ‘ ( 𝑛  ·  𝑋 ) )  =  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 345 | 342 344 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 346 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐵 ‘ 𝑛 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 347 | 343 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( sin ‘ ( 𝑛  ·  𝑋 ) )  =  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 348 | 346 347 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 349 | 345 348 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 350 | 349 | cbvsumv | ⊢ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 351 |  | oveq2 | ⊢ ( 𝑗  =  𝑚  →  ( 1 ... 𝑗 )  =  ( 1 ... 𝑚 ) ) | 
						
							| 352 | 351 | eqcomd | ⊢ ( 𝑗  =  𝑚  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑗 ) ) | 
						
							| 353 | 352 | sumeq1d | ⊢ ( 𝑗  =  𝑚  →  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 354 | 350 353 | eqtr2id | ⊢ ( 𝑗  =  𝑚  →  Σ 𝑘  ∈  ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 355 | 354 | oveq2d | ⊢ ( 𝑗  =  𝑚  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 356 | 355 | cbvmptv | ⊢ ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑗 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 357 |  | fdm | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  dom  𝐹  =  ℝ ) | 
						
							| 358 | 1 357 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  ℝ ) | 
						
							| 359 | 358 161 | eqsstrd | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 360 | 358 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℝ  ↔  𝐹 : ℝ ⟶ ℝ ) ) | 
						
							| 361 | 1 360 | mpbird | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 362 | 359 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  →  𝑡  ∈  ℝ ) | 
						
							| 363 | 362 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  𝑡  ∈  ℝ ) | 
						
							| 364 | 176 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ ) | 
						
							| 365 | 182 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ ) | 
						
							| 366 | 364 365 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ ) | 
						
							| 367 | 363 366 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  ℝ ) | 
						
							| 368 | 358 | eqcomd | ⊢ ( 𝜑  →  ℝ  =  dom  𝐹 ) | 
						
							| 369 | 368 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ℝ  =  dom  𝐹 ) | 
						
							| 370 | 367 369 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  𝐹 ) | 
						
							| 371 |  | id | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝜑  ∧  𝑘  ∈  ℤ ) ) | 
						
							| 372 | 371 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝜑  ∧  𝑘  ∈  ℤ ) ) | 
						
							| 373 | 372 363 189 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  𝐹 )  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 374 | 359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200 | fourierdlem71 | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ℝ ∀ 𝑡  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢 ) | 
						
							| 375 | 358 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢  ↔  ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢 ) ) | 
						
							| 376 | 375 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ℝ ∀ 𝑡  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢  ↔  ∃ 𝑢  ∈  ℝ ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢 ) ) | 
						
							| 377 | 374 376 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ℝ ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑢 ) | 
						
							| 378 | 1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4 | fourierdlem112 | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝑆 )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  ∧  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( 𝐿  +  𝑅 )  /  2 ) ) ) |