Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem112.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem112.d |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
3 |
|
fourierdlem112.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem112.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fourierdlem112.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
6 |
|
fourierdlem112.n |
⊢ 𝑁 = ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
7 |
|
fourierdlem112.v |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
8 |
|
fourierdlem112.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
9 |
|
fourierdlem112.xran |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑉 ) |
10 |
|
fourierdlem112.t |
⊢ 𝑇 = ( 2 · π ) |
11 |
|
fourierdlem112.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
|
fourierdlem112.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
13 |
|
fourierdlem112.c |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
14 |
|
fourierdlem112.u |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
15 |
|
fourierdlem112.fdvcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
16 |
|
fourierdlem112.e |
⊢ ( 𝜑 → 𝐸 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
17 |
|
fourierdlem112.i |
⊢ ( 𝜑 → 𝐼 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
18 |
|
fourierdlem112.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
19 |
|
fourierdlem112.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
20 |
|
fourierdlem112.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
21 |
|
fourierdlem112.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
22 |
|
fourierdlem112.z |
⊢ 𝑍 = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
23 |
|
fourierdlem112.23 |
⊢ 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
24 |
|
fourierdlem112.fbd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
25 |
|
fourierdlem112.fdvbd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
26 |
|
fourierdlem112.25 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
27 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑗 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑛 = 𝑗 → ( cos ‘ ( 𝑛 · 𝑋 ) ) = ( cos ‘ ( 𝑗 · 𝑋 ) ) ) |
30 |
27 29
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑗 ) ) |
32 |
28
|
fveq2d |
⊢ ( 𝑛 = 𝑗 → ( sin ‘ ( 𝑛 · 𝑋 ) ) = ( sin ‘ ( 𝑗 · 𝑋 ) ) ) |
33 |
31 32
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) |
34 |
30 33
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) |
35 |
34
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) |
36 |
23 35
|
eqtri |
⊢ 𝑆 = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) |
37 |
|
seqeq3 |
⊢ ( 𝑆 = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) → seq 1 ( + , 𝑆 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ) |
38 |
36 37
|
mp1i |
⊢ ( 𝜑 → seq 1 ( + , 𝑆 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ) |
39 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
40 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
41 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
42 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
43 |
|
nfcv |
⊢ Ⅎ 𝑛 ( - π (,) 0 ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
46 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) |
47 |
44 45 46
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) |
48 |
43 47
|
nfitg |
⊢ Ⅎ 𝑛 ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 |
49 |
42 48
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) |
50 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 0 (,) π ) |
51 |
50 47
|
nfitg |
⊢ Ⅎ 𝑛 ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 |
52 |
42 51
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) |
53 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
54 |
20 53
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
55 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
56 |
54 55
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 0 ) |
57 |
|
nfcv |
⊢ Ⅎ 𝑛 / |
58 |
|
nfcv |
⊢ Ⅎ 𝑛 2 |
59 |
56 57 58
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝐴 ‘ 0 ) / 2 ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑛 + |
61 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ... 𝑚 ) |
62 |
61
|
nfsum1 |
⊢ Ⅎ 𝑛 Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) |
63 |
59 60 62
|
nfov |
⊢ Ⅎ 𝑛 ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
64 |
42 63
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
65 |
22 64
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑍 |
66 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
67 |
|
picn |
⊢ π ∈ ℂ |
68 |
67
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
69 |
67 67
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
70 |
68 10 69
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
71 |
|
pire |
⊢ π ∈ ℝ |
72 |
71
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
73 |
72
|
renegcld |
⊢ ( 𝜑 → - π ∈ ℝ ) |
74 |
73 26
|
readdcld |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ ) |
75 |
72 26
|
readdcld |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ℝ ) |
76 |
|
negpilt0 |
⊢ - π < 0 |
77 |
|
pipos |
⊢ 0 < π |
78 |
71
|
renegcli |
⊢ - π ∈ ℝ |
79 |
|
0re |
⊢ 0 ∈ ℝ |
80 |
78 79 71
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
81 |
76 77 80
|
mp2an |
⊢ - π < π |
82 |
81
|
a1i |
⊢ ( 𝜑 → - π < π ) |
83 |
73 72 26 82
|
ltadd1dd |
⊢ ( 𝜑 → ( - π + 𝑋 ) < ( π + 𝑋 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
85 |
84
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
86 |
85
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
87 |
86
|
cbvrabv |
⊢ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
88 |
87
|
uneq2i |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑥 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
89 |
70 3 4 5 74 75 83 66 88 6 7
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑉 ∈ ( ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑁 ) ) ∧ 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
90 |
89
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑉 ∈ ( ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑁 ) ) ) |
91 |
90
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
92 |
90
|
simprd |
⊢ ( 𝜑 → 𝑉 ∈ ( ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑁 ) ) |
93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
94 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑗 ) ) |
95 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
97 |
94 96
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
98 |
97
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
99 |
98
|
anbi2i |
⊢ ( ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
100 |
99
|
a1i |
⊢ ( 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) → ( ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) ) |
101 |
100
|
rabbiia |
⊢ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } |
102 |
101
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
103 |
3 102
|
eqtri |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
104 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
105 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
106 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
107 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) |
108 |
107
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
109 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
110 |
95
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
111 |
109 110
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
112 |
111
|
reseq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
113 |
111
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
114 |
112 113
|
eleq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ↔ ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) ) |
115 |
108 114
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) ) ) |
116 |
115 12
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
117 |
116
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
118 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( - π + 𝑋 ) ∈ ℝ ) |
119 |
74
|
rexrd |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ* ) |
120 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
121 |
120
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
122 |
75
|
ltpnfd |
⊢ ( 𝜑 → ( π + 𝑋 ) < +∞ ) |
123 |
119 121 75 83 122
|
eliood |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ( ( - π + 𝑋 ) (,) +∞ ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( π + 𝑋 ) ∈ ( ( - π + 𝑋 ) (,) +∞ ) ) |
125 |
|
id |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
126 |
6
|
oveq2i |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) |
127 |
125 126
|
eleqtrdi |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) → 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) ) |
128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) ) |
129 |
6
|
oveq2i |
⊢ ( 0 ... 𝑁 ) = ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) |
130 |
|
isoeq4 |
⊢ ( ( 0 ... 𝑁 ) = ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
131 |
129 130
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
132 |
131
|
iotabii |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
133 |
7 132
|
eqtri |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
134 |
93 103 70 104 105 106 117 118 124 128 133
|
fourierdlem98 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
135 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
136 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 |
137 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
138 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
139 |
137 138
|
sylan2 |
⊢ ( ( ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
140 |
139
|
ex |
⊢ ( ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 → ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ) |
141 |
136 140
|
ralrimi |
⊢ ( ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
142 |
141
|
reximi |
⊢ ( ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
143 |
135 142
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
144 |
|
ssid |
⊢ ℝ ⊆ ℝ |
145 |
|
dvfre |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
146 |
1 144 145
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
148 |
|
eqid |
⊢ ( ℝ D 𝐹 ) = ( ℝ D 𝐹 ) |
149 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → π ∈ ℝ ) |
150 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → - π ∈ ℝ ) |
151 |
111
|
reseq2d |
⊢ ( 𝑖 = 𝑗 → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
152 |
151 113
|
eleq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ↔ ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) ) |
153 |
108 152
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) ) ) |
154 |
153 15
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
155 |
154
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
156 |
73 8
|
readdcld |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ ) |
157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( - π + 𝑋 ) ∈ ℝ ) |
158 |
156
|
rexrd |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ* ) |
159 |
72 8
|
readdcld |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ℝ ) |
160 |
73 72 8 82
|
ltadd1dd |
⊢ ( 𝜑 → ( - π + 𝑋 ) < ( π + 𝑋 ) ) |
161 |
159
|
ltpnfd |
⊢ ( 𝜑 → ( π + 𝑋 ) < +∞ ) |
162 |
158 121 159 160 161
|
eliood |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ( ( - π + 𝑋 ) (,) +∞ ) ) |
163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( π + 𝑋 ) ∈ ( ( - π + 𝑋 ) (,) +∞ ) ) |
164 |
|
oveq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 · 𝑇 ) = ( ℎ · 𝑇 ) ) |
165 |
164
|
oveq2d |
⊢ ( 𝑘 = ℎ → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( ℎ · 𝑇 ) ) ) |
166 |
165
|
eleq1d |
⊢ ( 𝑘 = ℎ → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
167 |
166
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) |
168 |
167
|
rgenw |
⊢ ∀ 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) |
169 |
|
rabbi |
⊢ ( ∀ 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ↔ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
170 |
168 169
|
mpbi |
⊢ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } |
171 |
170
|
uneq2i |
⊢ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
172 |
|
isoeq5 |
⊢ ( ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
173 |
171 172
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
174 |
173
|
iotabii |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
175 |
133 174
|
eqtri |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( - π + 𝑋 ) , ( π + 𝑋 ) } ∪ { 𝑦 ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
176 |
|
eleq1w |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 ∈ dom ( ℝ D 𝐹 ) ↔ 𝑢 ∈ dom ( ℝ D 𝐹 ) ) ) |
177 |
|
fveq2 |
⊢ ( 𝑣 = 𝑢 → ( ( ℝ D 𝐹 ) ‘ 𝑣 ) = ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) |
178 |
176 177
|
ifbieq1d |
⊢ ( 𝑣 = 𝑢 → if ( 𝑣 ∈ dom ( ℝ D 𝐹 ) , ( ( ℝ D 𝐹 ) ‘ 𝑣 ) , 0 ) = if ( 𝑢 ∈ dom ( ℝ D 𝐹 ) , ( ( ℝ D 𝐹 ) ‘ 𝑢 ) , 0 ) ) |
179 |
178
|
cbvmptv |
⊢ ( 𝑣 ∈ ℝ ↦ if ( 𝑣 ∈ dom ( ℝ D 𝐹 ) , ( ( ℝ D 𝐹 ) ‘ 𝑣 ) , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ dom ( ℝ D 𝐹 ) , ( ( ℝ D 𝐹 ) ‘ 𝑢 ) , 0 ) ) |
180 |
93 148 103 149 150 70 104 105 106 155 157 163 128 175 179
|
fourierdlem97 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
181 |
|
cncff |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
182 |
|
fdm |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
183 |
180 181 182
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
184 |
|
ssdmres |
⊢ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
185 |
183 184
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
186 |
147 185
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
187 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
188 |
187
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ℝ ⊆ ℂ ) |
189 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ↔ ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) ) |
190 |
188 180 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ↔ ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) ) |
191 |
186 190
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
192 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
193 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
194 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 |
195 |
193 194
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
196 |
|
fvres |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
197 |
196
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
198 |
197
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
199 |
198
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
200 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
201 |
185
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ dom ( ℝ D 𝐹 ) ) |
202 |
201
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ dom ( ℝ D 𝐹 ) ) |
203 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
204 |
200 202 203
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
205 |
199 204
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
206 |
205
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
207 |
195 206
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
208 |
207
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
209 |
208
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
210 |
192 209
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
211 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 |
212 |
196
|
eqcomd |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) |
213 |
212
|
fveq2d |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ) |
214 |
213
|
adantl |
⊢ ( ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ) |
215 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
216 |
214 215
|
eqbrtrd |
⊢ ( ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
217 |
216
|
ex |
⊢ ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 → ( 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
218 |
211 217
|
ralrimi |
⊢ ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
219 |
218
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
220 |
219
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
221 |
210 220
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
222 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
223 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐶 |
224 |
223
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) |
225 |
222 224
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) |
226 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ) |
227 |
112 109
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) |
228 |
226 227
|
eleq12d |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ↔ ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) ) |
229 |
108 228
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) ) ) |
230 |
225 229 13
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) |
231 |
230
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑗 ) ) ) |
232 |
93 103 70 104 105 106 117 231 118 124 128 133
|
fourierdlem96 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) = ( 𝑄 ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { 𝑓 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑓 ) ≤ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ) ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { 𝑓 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑓 ) ≤ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( 𝐹 ‘ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
233 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝑈 |
234 |
233
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) |
235 |
222 234
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
236 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑗 → 𝑈 = ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ) |
237 |
112 110
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
238 |
236 237
|
eleq12d |
⊢ ( 𝑖 = 𝑗 → ( 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) |
239 |
108 238
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
240 |
235 239 14
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
241 |
240
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) |
242 |
93 103 70 104 105 106 117 241 157 163 128 133
|
fourierdlem99 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( ( ( 𝑦 ∈ ℝ ↦ sup ( { ℎ ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ ℎ ) ≤ ( ( 𝑔 ∈ ( - π (,] π ) ↦ if ( 𝑔 = π , - π , 𝑔 ) ) ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) + 1 ) ) , ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ) ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { ℎ ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ ℎ ) ≤ ( ( 𝑔 ∈ ( - π (,] π ) ↦ if ( 𝑔 = π , - π , 𝑔 ) ) ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( 𝐹 ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
243 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑠 → ( 𝑔 = 0 ↔ 𝑠 = 0 ) ) |
244 |
|
oveq2 |
⊢ ( 𝑔 = 𝑠 → ( 𝑋 + 𝑔 ) = ( 𝑋 + 𝑠 ) ) |
245 |
244
|
fveq2d |
⊢ ( 𝑔 = 𝑠 → ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
246 |
|
breq2 |
⊢ ( 𝑔 = 𝑠 → ( 0 < 𝑔 ↔ 0 < 𝑠 ) ) |
247 |
246
|
ifbid |
⊢ ( 𝑔 = 𝑠 → if ( 0 < 𝑔 , 𝑅 , 𝐿 ) = if ( 0 < 𝑠 , 𝑅 , 𝐿 ) ) |
248 |
245 247
|
oveq12d |
⊢ ( 𝑔 = 𝑠 → ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑅 , 𝐿 ) ) ) |
249 |
|
id |
⊢ ( 𝑔 = 𝑠 → 𝑔 = 𝑠 ) |
250 |
248 249
|
oveq12d |
⊢ ( 𝑔 = 𝑠 → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑅 , 𝐿 ) ) / 𝑠 ) ) |
251 |
243 250
|
ifbieq2d |
⊢ ( 𝑔 = 𝑠 → if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) = if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑅 , 𝐿 ) ) / 𝑠 ) ) ) |
252 |
251
|
cbvmptv |
⊢ ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑅 , 𝐿 ) ) / 𝑠 ) ) ) |
253 |
|
eqeq1 |
⊢ ( 𝑜 = 𝑠 → ( 𝑜 = 0 ↔ 𝑠 = 0 ) ) |
254 |
|
id |
⊢ ( 𝑜 = 𝑠 → 𝑜 = 𝑠 ) |
255 |
|
oveq1 |
⊢ ( 𝑜 = 𝑠 → ( 𝑜 / 2 ) = ( 𝑠 / 2 ) ) |
256 |
255
|
fveq2d |
⊢ ( 𝑜 = 𝑠 → ( sin ‘ ( 𝑜 / 2 ) ) = ( sin ‘ ( 𝑠 / 2 ) ) ) |
257 |
256
|
oveq2d |
⊢ ( 𝑜 = 𝑠 → ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) = ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
258 |
254 257
|
oveq12d |
⊢ ( 𝑜 = 𝑠 → ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) = ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
259 |
253 258
|
ifbieq2d |
⊢ ( 𝑜 = 𝑠 → if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) = if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
260 |
259
|
cbvmptv |
⊢ ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
261 |
|
fveq2 |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) = ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑠 ) ) |
262 |
|
fveq2 |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) = ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑠 ) ) |
263 |
261 262
|
oveq12d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) = ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑠 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑠 ) ) ) |
264 |
263
|
cbvmptv |
⊢ ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑠 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑠 ) ) ) |
265 |
|
oveq2 |
⊢ ( 𝑑 = 𝑠 → ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) = ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) |
266 |
265
|
fveq2d |
⊢ ( 𝑑 = 𝑠 → ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) = ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
267 |
266
|
cbvmptv |
⊢ ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
268 |
|
fveq2 |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) = ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) ) |
269 |
|
fveq2 |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) = ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑠 ) ) |
270 |
268 269
|
oveq12d |
⊢ ( 𝑧 = 𝑠 → ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) = ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑠 ) ) ) |
271 |
270
|
cbvmptv |
⊢ ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑠 ) ) ) |
272 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐷 ‘ 𝑚 ) = ( 𝐷 ‘ 𝑛 ) ) |
273 |
272
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
274 |
273
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
275 |
274
|
adantr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑠 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
276 |
275
|
itgeq2dv |
⊢ ( 𝑚 = 𝑛 → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
277 |
276
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) = ( 𝑛 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
278 |
|
oveq1 |
⊢ ( 𝑐 = 𝑘 → ( 𝑐 + ( 1 / 2 ) ) = ( 𝑘 + ( 1 / 2 ) ) ) |
279 |
278
|
oveq1d |
⊢ ( 𝑐 = 𝑘 → ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) = ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) |
280 |
279
|
fveq2d |
⊢ ( 𝑐 = 𝑘 → ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) = ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) |
281 |
280
|
mpteq2dv |
⊢ ( 𝑐 = 𝑘 → ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) = ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ) |
282 |
281
|
fveq1d |
⊢ ( 𝑐 = 𝑘 → ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) = ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) |
283 |
282
|
oveq2d |
⊢ ( 𝑐 = 𝑘 → ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) = ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) |
284 |
283
|
mpteq2dv |
⊢ ( 𝑐 = 𝑘 → ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ) |
285 |
284
|
fveq1d |
⊢ ( 𝑐 = 𝑘 → ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) = ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) |
286 |
285
|
adantr |
⊢ ( ( 𝑐 = 𝑘 ∧ 𝑠 ∈ ( - π (,) 0 ) ) → ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) = ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) |
287 |
286
|
itgeq2dv |
⊢ ( 𝑐 = 𝑘 → ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 = ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 ) |
288 |
287
|
oveq1d |
⊢ ( 𝑐 = 𝑘 → ( ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) = ( ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) |
289 |
288
|
cbvmptv |
⊢ ( 𝑐 ∈ ℕ ↦ ( ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) = ( 𝑘 ∈ ℕ ↦ ( ∫ ( - π (,) 0 ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) |
290 |
|
oveq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 mod ( 2 · π ) ) = ( 𝑠 mod ( 2 · π ) ) ) |
291 |
290
|
eqeq1d |
⊢ ( 𝑦 = 𝑠 → ( ( 𝑦 mod ( 2 · π ) ) = 0 ↔ ( 𝑠 mod ( 2 · π ) ) = 0 ) ) |
292 |
|
oveq2 |
⊢ ( 𝑦 = 𝑠 → ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) = ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) |
293 |
292
|
fveq2d |
⊢ ( 𝑦 = 𝑠 → ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) = ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
294 |
|
oveq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 / 2 ) = ( 𝑠 / 2 ) ) |
295 |
294
|
fveq2d |
⊢ ( 𝑦 = 𝑠 → ( sin ‘ ( 𝑦 / 2 ) ) = ( sin ‘ ( 𝑠 / 2 ) ) ) |
296 |
295
|
oveq2d |
⊢ ( 𝑦 = 𝑠 → ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
297 |
293 296
|
oveq12d |
⊢ ( 𝑦 = 𝑠 → ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
298 |
291 297
|
ifbieq2d |
⊢ ( 𝑦 = 𝑠 → if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) = if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
299 |
298
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
300 |
|
simpl |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → 𝑚 = 𝑘 ) |
301 |
300
|
oveq2d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( 2 · 𝑚 ) = ( 2 · 𝑘 ) ) |
302 |
301
|
oveq1d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
303 |
302
|
oveq1d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) ) |
304 |
300
|
oveq1d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( 𝑚 + ( 1 / 2 ) ) = ( 𝑘 + ( 1 / 2 ) ) ) |
305 |
304
|
oveq1d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) = ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) |
306 |
305
|
fveq2d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) = ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
307 |
306
|
oveq1d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
308 |
303 307
|
ifeq12d |
⊢ ( ( 𝑚 = 𝑘 ∧ 𝑠 ∈ ℝ ) → if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
309 |
308
|
mpteq2dva |
⊢ ( 𝑚 = 𝑘 → ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) = ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
310 |
299 309
|
eqtrid |
⊢ ( 𝑚 = 𝑘 → ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
311 |
310
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑚 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑚 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
312 |
2 311
|
eqtri |
⊢ 𝐷 = ( 𝑘 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
313 |
|
eqid |
⊢ ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ↾ ( - π [,] 𝑙 ) ) = ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ↾ ( - π [,] 𝑙 ) ) |
314 |
|
eqid |
⊢ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) = ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) |
315 |
|
eqid |
⊢ ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) = ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) |
316 |
|
isoeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ↔ 𝑤 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) ) |
317 |
316
|
cbviotavw |
⊢ ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) = ( ℩ 𝑤 𝑤 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) |
318 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑉 ‘ 𝑗 ) = ( 𝑉 ‘ 𝑖 ) ) |
319 |
318
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
320 |
319
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
321 |
|
eqid |
⊢ ( ℩ 𝑚 ∈ ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) ‘ ( 𝑏 + 1 ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ 𝑚 ) (,) ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ ( 𝑚 + 1 ) ) ) ) = ( ℩ 𝑚 ∈ ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) − 1 ) ) , ( { - π , 𝑙 } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( - π (,) 𝑙 ) ) ) ) ) ‘ ( 𝑏 + 1 ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ 𝑚 ) (,) ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ ( 𝑚 + 1 ) ) ) ) |
322 |
|
fveq2 |
⊢ ( 𝑎 = 𝑠 → ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) = ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) ) |
323 |
|
oveq2 |
⊢ ( 𝑎 = 𝑠 → ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) = ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) |
324 |
323
|
fveq2d |
⊢ ( 𝑎 = 𝑠 → ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) = ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
325 |
322 324
|
oveq12d |
⊢ ( 𝑎 = 𝑠 → ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) = ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) ) |
326 |
325
|
cbvitgv |
⊢ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 = ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 |
327 |
326
|
fveq2i |
⊢ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) = ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) |
328 |
327
|
breq1i |
⊢ ( ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑖 / 2 ) ↔ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑖 / 2 ) ) |
329 |
328
|
anbi2i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ+ ) ∧ 𝑙 ∈ ( - π (,) 0 ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑖 / 2 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ+ ) ∧ 𝑙 ∈ ( - π (,) 0 ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑖 / 2 ) ) ) |
330 |
325
|
cbvitgv |
⊢ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 = ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 |
331 |
330
|
fveq2i |
⊢ ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) = ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) |
332 |
331
|
breq1i |
⊢ ( ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑖 / 2 ) ↔ ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑖 / 2 ) ) |
333 |
329 332
|
anbi12i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ+ ) ∧ 𝑙 ∈ ( - π (,) 0 ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑖 / 2 ) ) ∧ ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑖 / 2 ) ) ↔ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℝ+ ) ∧ 𝑙 ∈ ( - π (,) 0 ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑖 / 2 ) ) ∧ ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑖 / 2 ) ) ) |
334 |
1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 277 289 19 18 16 17 312 313 314 315 317 320 321 333
|
fourierdlem103 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ⇝ ( 𝐿 / 2 ) ) |
335 |
|
nnex |
⊢ ℕ ∈ V |
336 |
335
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) ∈ V |
337 |
22 336
|
eqeltri |
⊢ 𝑍 ∈ V |
338 |
337
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
339 |
274
|
adantr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
340 |
339
|
itgeq2dv |
⊢ ( 𝑚 = 𝑛 → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
341 |
340
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) = ( 𝑛 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
342 |
285
|
adantr |
⊢ ( ( 𝑐 = 𝑘 ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) = ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) |
343 |
342
|
itgeq2dv |
⊢ ( 𝑐 = 𝑘 → ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 = ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 ) |
344 |
343
|
oveq1d |
⊢ ( 𝑐 = 𝑘 → ( ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) = ( ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) |
345 |
344
|
cbvmptv |
⊢ ( 𝑐 ∈ ℕ ↦ ( ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑐 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) = ( 𝑘 ∈ ℕ ↦ ( ∫ ( 0 (,) π ) ( ( 𝑧 ∈ ( - π [,] π ) ↦ ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 ) · ( ( 𝑑 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑘 + ( 1 / 2 ) ) · 𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) d 𝑠 / π ) ) |
346 |
|
eqid |
⊢ ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ↾ ( 𝑒 [,] π ) ) = ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ↾ ( 𝑒 [,] π ) ) |
347 |
|
eqid |
⊢ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) = ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) |
348 |
|
eqid |
⊢ ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) = ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) |
349 |
|
isoeq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ↔ 𝑣 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) ) |
350 |
349
|
cbviotavw |
⊢ ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) = ( ℩ 𝑣 𝑣 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) |
351 |
|
eqid |
⊢ ( ℩ 𝑎 ∈ ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) ‘ ( 𝑏 + 1 ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ 𝑎 ) (,) ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ ( 𝑎 + 1 ) ) ) ) = ( ℩ 𝑎 ∈ ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) − 1 ) ) , ( { 𝑒 , π } ∪ ( ran ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ∩ ( 𝑒 (,) π ) ) ) ) ) ‘ ( 𝑏 + 1 ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ 𝑎 ) (,) ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ‘ ( 𝑎 + 1 ) ) ) ) |
352 |
325
|
cbvitgv |
⊢ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 = ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 |
353 |
352
|
fveq2i |
⊢ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) = ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) |
354 |
353
|
breq1i |
⊢ ( ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑞 / 2 ) ↔ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑞 / 2 ) ) |
355 |
354
|
anbi2i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℝ+ ) ∧ 𝑒 ∈ ( 0 (,) π ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑞 / 2 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℝ+ ) ∧ 𝑒 ∈ ( 0 (,) π ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑞 / 2 ) ) ) |
356 |
325
|
cbvitgv |
⊢ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 = ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 |
357 |
356
|
fveq2i |
⊢ ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) = ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) |
358 |
357
|
breq1i |
⊢ ( ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑞 / 2 ) ↔ ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑞 / 2 ) ) |
359 |
355 358
|
anbi12i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℝ+ ) ∧ 𝑒 ∈ ( 0 (,) π ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑞 / 2 ) ) ∧ ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑎 ) ) ) d 𝑎 ) < ( 𝑞 / 2 ) ) ↔ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℝ+ ) ∧ 𝑒 ∈ ( 0 (,) π ) ) ∧ 𝑏 ∈ ℕ ) ∧ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑞 / 2 ) ) ∧ ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟 ∈ ( - π [,] π ) ↦ ( ( ( 𝑔 ∈ ( - π [,] π ) ↦ if ( 𝑔 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑔 ) ) − if ( 0 < 𝑔 , 𝑅 , 𝐿 ) ) / 𝑔 ) ) ) ‘ 𝑟 ) · ( ( 𝑜 ∈ ( - π [,] π ) ↦ if ( 𝑜 = 0 , 1 , ( 𝑜 / ( 2 · ( sin ‘ ( 𝑜 / 2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) · ( sin ‘ ( ( 𝑏 + ( 1 / 2 ) ) · 𝑠 ) ) ) d 𝑠 ) < ( 𝑞 / 2 ) ) ) |
360 |
1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 341 345 19 18 16 17 312 346 347 348 350 320 351 359
|
fourierdlem104 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ⇝ ( 𝑅 / 2 ) ) |
361 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) = ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
362 |
276
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 = 𝑛 ) → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
363 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
364 |
|
elioore |
⊢ ( 𝑠 ∈ ( - π (,) 0 ) → 𝑠 ∈ ℝ ) |
365 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
366 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
367 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
368 |
366 367
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
369 |
365 368
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
370 |
369
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
371 |
2
|
dirkerre |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
372 |
371
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
373 |
370 372
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
374 |
364 373
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
375 |
|
ioossicc |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] 0 ) |
376 |
78
|
leidi |
⊢ - π ≤ - π |
377 |
79 71 77
|
ltleii |
⊢ 0 ≤ π |
378 |
|
iccss |
⊢ ( ( ( - π ∈ ℝ ∧ π ∈ ℝ ) ∧ ( - π ≤ - π ∧ 0 ≤ π ) ) → ( - π [,] 0 ) ⊆ ( - π [,] π ) ) |
379 |
78 71 376 377 378
|
mp4an |
⊢ ( - π [,] 0 ) ⊆ ( - π [,] π ) |
380 |
375 379
|
sstri |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] π ) |
381 |
380
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ⊆ ( - π [,] π ) ) |
382 |
|
ioombl |
⊢ ( - π (,) 0 ) ∈ dom vol |
383 |
382
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - π (,) 0 ) ∈ dom vol ) |
384 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
385 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
386 |
73 72
|
iccssred |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
387 |
386
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑠 ∈ ℝ ) |
388 |
385 387
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
389 |
384 388
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
390 |
389
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
391 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
392 |
78 71 391
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
393 |
392
|
sseli |
⊢ ( 𝑠 ∈ ( - π [,] π ) → 𝑠 ∈ ℝ ) |
394 |
393 371
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
395 |
394
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
396 |
390 395
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
397 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
398 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
399 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
400 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
401 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
402 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑉 ∈ ( ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑁 ) ) |
403 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
404 |
232
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) = ( 𝑄 ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { 𝑓 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑓 ) ≤ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐶 ) ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { 𝑓 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑓 ) ≤ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( 𝐹 ‘ ( ( 𝑑 ∈ ( - π (,] π ) ↦ if ( 𝑑 = π , - π , 𝑑 ) ) ‘ ( ( 𝑐 ∈ ℝ ↦ ( 𝑐 + ( ( ⌊ ‘ ( ( π − 𝑐 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
405 |
242
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( ( ( 𝑦 ∈ ℝ ↦ sup ( { ℎ ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ ℎ ) ≤ ( ( 𝑔 ∈ ( - π (,] π ) ↦ if ( 𝑔 = π , - π , 𝑔 ) ) ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) + 1 ) ) , ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝑈 ) ‘ ( ( 𝑦 ∈ ℝ ↦ sup ( { ℎ ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ ℎ ) ≤ ( ( 𝑔 ∈ ( - π (,] π ) ↦ if ( 𝑔 = π , - π , 𝑔 ) ) ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑦 ) ) } , ℝ , < ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) , ( 𝐹 ‘ ( ( 𝑒 ∈ ℝ ↦ ( 𝑒 + ( ( ⌊ ‘ ( ( π − 𝑒 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
406 |
2
|
dirkercncf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
407 |
406
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
408 |
|
eqid |
⊢ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
409 |
397 398 399 400 66 401 402 403 404 405 320 3 407 408
|
fourierdlem84 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
410 |
381 383 396 409
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
411 |
374 410
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ∈ ℂ ) |
412 |
361 362 363 411
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) = ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
413 |
412 411
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) ∈ ℂ ) |
414 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) = ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
415 |
340
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 = 𝑛 ) → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 = ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
416 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 (,) π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
417 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 (,) π ) ) → 𝑋 ∈ ℝ ) |
418 |
|
elioore |
⊢ ( 𝑠 ∈ ( 0 (,) π ) → 𝑠 ∈ ℝ ) |
419 |
418
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 (,) π ) ) → 𝑠 ∈ ℝ ) |
420 |
417 419
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
421 |
416 420
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
422 |
421
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
423 |
418 371
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
424 |
423
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
425 |
422 424
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
426 |
|
ioossicc |
⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) |
427 |
78 79 76
|
ltleii |
⊢ - π ≤ 0 |
428 |
71
|
leidi |
⊢ π ≤ π |
429 |
|
iccss |
⊢ ( ( ( - π ∈ ℝ ∧ π ∈ ℝ ) ∧ ( - π ≤ 0 ∧ π ≤ π ) ) → ( 0 [,] π ) ⊆ ( - π [,] π ) ) |
430 |
78 71 427 428 429
|
mp4an |
⊢ ( 0 [,] π ) ⊆ ( - π [,] π ) |
431 |
426 430
|
sstri |
⊢ ( 0 (,) π ) ⊆ ( - π [,] π ) |
432 |
431
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ⊆ ( - π [,] π ) ) |
433 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
434 |
433
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 (,) π ) ∈ dom vol ) |
435 |
432 434 396 409
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
436 |
425 435
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ∈ ℂ ) |
437 |
414 415 363 436
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) = ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
438 |
437 436
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) ∈ ℂ ) |
439 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ℕ ↔ 𝑛 ∈ ℕ ) ) |
440 |
439
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑛 ∈ ℕ ) ) ) |
441 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑍 ‘ 𝑚 ) = ( 𝑍 ‘ 𝑛 ) ) |
442 |
276 340
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
443 |
441 442
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑍 ‘ 𝑚 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ↔ ( 𝑍 ‘ 𝑛 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) ) |
444 |
440 443
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑍 ‘ 𝑛 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) ) ) |
445 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝑥 ) = ( 𝑚 · 𝑥 ) ) |
446 |
445
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑚 · 𝑥 ) ) ) |
447 |
446
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) ) |
448 |
447
|
adantr |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) ) |
449 |
448
|
itgeq2dv |
⊢ ( 𝑛 = 𝑚 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 ) |
450 |
449
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) = ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
451 |
450
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
452 |
20 451
|
eqtri |
⊢ 𝐴 = ( 𝑚 ∈ ℕ0 ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
453 |
445
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( sin ‘ ( 𝑛 · 𝑥 ) ) = ( sin ‘ ( 𝑚 · 𝑥 ) ) ) |
454 |
453
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) ) |
455 |
454
|
adantr |
⊢ ( ( 𝑛 = 𝑚 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) ) |
456 |
455
|
itgeq2dv |
⊢ ( 𝑛 = 𝑚 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 = ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 ) |
457 |
456
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) = ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
458 |
457
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
459 |
21 458
|
eqtri |
⊢ 𝐵 = ( 𝑚 ∈ ℕ ↦ ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑚 · 𝑥 ) ) ) d 𝑥 / π ) ) |
460 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ) |
461 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
462 |
461
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( cos ‘ ( 𝑛 · 𝑋 ) ) = ( cos ‘ ( 𝑘 · 𝑋 ) ) ) |
463 |
460 462
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ) |
464 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑘 ) ) |
465 |
461
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( sin ‘ ( 𝑛 · 𝑋 ) ) = ( sin ‘ ( 𝑘 · 𝑋 ) ) ) |
466 |
464 465
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
467 |
463 466
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
468 |
467
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
469 |
468
|
oveq2i |
⊢ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
470 |
469
|
mpteq2i |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) |
471 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
472 |
471
|
sumeq1d |
⊢ ( 𝑚 = 𝑛 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
473 |
472
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) |
474 |
473
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) |
475 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑚 ) ) |
476 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 · 𝑋 ) = ( 𝑚 · 𝑋 ) ) |
477 |
476
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( cos ‘ ( 𝑘 · 𝑋 ) ) = ( cos ‘ ( 𝑚 · 𝑋 ) ) ) |
478 |
475 477
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) ) |
479 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑚 ) ) |
480 |
476
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( sin ‘ ( 𝑘 · 𝑋 ) ) = ( sin ‘ ( 𝑚 · 𝑋 ) ) ) |
481 |
479 480
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) |
482 |
478 481
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) ) |
483 |
482
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) |
484 |
483
|
oveq2i |
⊢ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) ) |
485 |
484
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) ) ) |
486 |
474 485
|
eqtri |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) ) ) |
487 |
22 470 486
|
3eqtri |
⊢ 𝑍 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 ) · ( cos ‘ ( 𝑚 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑚 ) · ( sin ‘ ( 𝑚 · 𝑋 ) ) ) ) ) ) |
488 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑥 ) ) |
489 |
488
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) ) |
490 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) |
491 |
489 490
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
492 |
491
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑥 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
493 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π − 𝑋 ) ∧ ( 𝑝 ‘ 𝑛 ) = ( π − 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
494 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
495 |
494
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
496 |
495
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
497 |
452 459 487 2 3 4 5 8 1 11 492 12 13 14 10 493 496
|
fourierdlem111 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
498 |
444 497
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑍 ‘ 𝑛 ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
499 |
412 437
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) + ( ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) ) = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
500 |
498 499
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑍 ‘ 𝑛 ) = ( ( ( 𝑚 ∈ ℕ ↦ ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) + ( ( 𝑚 ∈ ℕ ↦ ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) d 𝑠 ) ‘ 𝑛 ) ) ) |
501 |
41 49 52 65 39 40 334 338 360 413 438 500
|
climaddf |
⊢ ( 𝜑 → 𝑍 ⇝ ( ( 𝐿 / 2 ) + ( 𝑅 / 2 ) ) ) |
502 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ⊆ ℂ |
503 |
502 18
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
504 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ⊆ ℂ |
505 |
504 19
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
506 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
507 |
|
2pos |
⊢ 0 < 2 |
508 |
507
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
509 |
508
|
gt0ne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
510 |
503 505 506 509
|
divdird |
⊢ ( 𝜑 → ( ( 𝐿 + 𝑅 ) / 2 ) = ( ( 𝐿 / 2 ) + ( 𝑅 / 2 ) ) ) |
511 |
501 510
|
breqtrrd |
⊢ ( 𝜑 → 𝑍 ⇝ ( ( 𝐿 + 𝑅 ) / 2 ) ) |
512 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
513 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ) → 𝐹 : ℝ ⟶ ℝ ) |
514 |
|
eqid |
⊢ ( - π (,) π ) = ( - π (,) π ) |
515 |
|
ioossre |
⊢ ( - π (,) π ) ⊆ ℝ |
516 |
515
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ℝ ) |
517 |
1 516
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) = ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
518 |
|
ioossicc |
⊢ ( - π (,) π ) ⊆ ( - π [,] π ) |
519 |
518
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ⊆ ( - π [,] π ) ) |
520 |
|
ioombl |
⊢ ( - π (,) π ) ∈ dom vol |
521 |
520
|
a1i |
⊢ ( 𝜑 → ( - π (,) π ) ∈ dom vol ) |
522 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
523 |
386
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
524 |
522 523
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
525 |
1 386
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
526 |
187
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
527 |
1 526
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
528 |
527 386
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) |
529 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
530 |
78
|
rexri |
⊢ - π ∈ ℝ* |
531 |
530
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
532 |
71
|
rexri |
⊢ π ∈ ℝ* |
533 |
532
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
534 |
3 4 5
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
535 |
534
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
536 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
537 |
531 533 535 536
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
538 |
529 537
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
539 |
538
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
540 |
539 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
541 |
539
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
542 |
541
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
543 |
13 542
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
544 |
541
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
545 |
14 544
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑈 ∈ ( ( ( 𝐹 ↾ ( - π [,] π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
546 |
3 4 5 528 540 543 545
|
fourierdlem69 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π [,] π ) ) ∈ 𝐿1 ) |
547 |
525 546
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
548 |
519 521 524 547
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
549 |
517 548
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
550 |
549
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
551 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
552 |
513 514 550 20 551
|
fourierdlem16 |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ) → ( ( ( 𝐴 ‘ 0 ) ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) ∧ ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 0 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |
553 |
552
|
simplld |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℝ ) |
554 |
512 553
|
mpan2 |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℝ ) |
555 |
554
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) / 2 ) ∈ ℝ ) |
556 |
555
|
recnd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) / 2 ) ∈ ℂ ) |
557 |
335
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ∈ V |
558 |
557
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ∈ V ) |
559 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
560 |
555
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 ‘ 0 ) / 2 ) ∈ ℝ ) |
561 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 1 ... 𝑚 ) ∈ Fin ) |
562 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑚 ) ) → 𝜑 ) |
563 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑚 ) → 𝑛 ∈ ℕ ) |
564 |
563
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑚 ) ) → 𝑛 ∈ ℕ ) |
565 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝜑 ) |
566 |
363
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
567 |
|
eleq1w |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ ℕ0 ↔ 𝑛 ∈ ℕ0 ) ) |
568 |
567
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ) ) |
569 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
570 |
569
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) ) |
571 |
568 570
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) ) ) |
572 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 : ℝ ⟶ ℝ ) |
573 |
549
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
574 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
575 |
572 514 573 20 574
|
fourierdlem16 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,) π ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) ∧ ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑘 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |
576 |
575
|
simplld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
577 |
571 576
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) |
578 |
565 566 577
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) |
579 |
363
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
580 |
579 400
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · 𝑋 ) ∈ ℝ ) |
581 |
580
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( cos ‘ ( 𝑛 · 𝑋 ) ) ∈ ℝ ) |
582 |
578 581
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) ∈ ℝ ) |
583 |
|
eleq1w |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ ) ) |
584 |
583
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑛 ∈ ℕ ) ) ) |
585 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑛 ) ) |
586 |
585
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐵 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) ) |
587 |
584 586
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) ) ) |
588 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
589 |
549
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ↾ ( - π (,) π ) ) ∈ 𝐿1 ) |
590 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
591 |
588 514 589 21 590
|
fourierdlem21 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐵 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,) π ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑘 · 𝑥 ) ) ) ) ∈ 𝐿1 ) ∧ ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑘 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) ) |
592 |
591
|
simplld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
593 |
587 592
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) |
594 |
580
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( sin ‘ ( 𝑛 · 𝑋 ) ) ∈ ℝ ) |
595 |
593 594
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ∈ ℝ ) |
596 |
582 595
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ∈ ℝ ) |
597 |
562 564 596
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑚 ) ) → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ∈ ℝ ) |
598 |
561 597
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ∈ ℝ ) |
599 |
560 598
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ∈ ℝ ) |
600 |
22
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ∈ ℝ ) → ( 𝑍 ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
601 |
559 599 600
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
602 |
601 599
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) ∈ ℝ ) |
603 |
602
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) ∈ ℂ ) |
604 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) |
605 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ... 𝑛 ) = ( 1 ... 𝑚 ) ) |
606 |
605
|
sumeq1d |
⊢ ( 𝑛 = 𝑚 → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
607 |
606
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 = 𝑚 ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
608 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ V |
609 |
608
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ V ) |
610 |
604 607 559 609
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
611 |
560
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 ‘ 0 ) / 2 ) ∈ ℂ ) |
612 |
598
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ∈ ℂ ) |
613 |
611 612
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
614 |
613 468
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
615 |
|
ovex |
⊢ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ∈ V |
616 |
22
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ∈ V ) → ( 𝑍 ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
617 |
559 615 616
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑍 ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) ) |
618 |
617
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( 𝑍 ‘ 𝑚 ) ) |
619 |
618
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) = ( ( 𝑍 ‘ 𝑚 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
620 |
610 614 619
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ‘ 𝑚 ) = ( ( 𝑍 ‘ 𝑚 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
621 |
39 40 511 556 558 603 620
|
climsubc1 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
622 |
|
seqex |
⊢ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ∈ V |
623 |
622
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ∈ V ) |
624 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ) |
625 |
|
oveq2 |
⊢ ( 𝑛 = 𝑙 → ( 1 ... 𝑛 ) = ( 1 ... 𝑙 ) ) |
626 |
625
|
sumeq1d |
⊢ ( 𝑛 = 𝑙 → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
627 |
626
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑛 = 𝑙 ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
628 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑙 ∈ ℕ ) |
629 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 1 ... 𝑙 ) ∈ Fin ) |
630 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑙 ) → 𝑘 ∈ ℕ ) |
631 |
630
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... 𝑙 ) → 𝑘 ∈ ℕ0 ) |
632 |
631 576
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
633 |
630
|
nnred |
⊢ ( 𝑘 ∈ ( 1 ... 𝑙 ) → 𝑘 ∈ ℝ ) |
634 |
633
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → 𝑘 ∈ ℝ ) |
635 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → 𝑋 ∈ ℝ ) |
636 |
634 635
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( 𝑘 · 𝑋 ) ∈ ℝ ) |
637 |
636
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( cos ‘ ( 𝑘 · 𝑋 ) ) ∈ ℝ ) |
638 |
632 637
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ∈ ℝ ) |
639 |
630 592
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
640 |
636
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( sin ‘ ( 𝑘 · 𝑋 ) ) ∈ ℝ ) |
641 |
639 640
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ∈ ℝ ) |
642 |
638 641
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℝ ) |
643 |
642
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℝ ) |
644 |
629 643
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℝ ) |
645 |
624 627 628 644
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ‘ 𝑙 ) = Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
646 |
|
eleq1w |
⊢ ( 𝑛 = 𝑙 → ( 𝑛 ∈ ℕ ↔ 𝑙 ∈ ℕ ) ) |
647 |
646
|
anbi2d |
⊢ ( 𝑛 = 𝑙 → ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑙 ∈ ℕ ) ) ) |
648 |
|
fveq2 |
⊢ ( 𝑛 = 𝑙 → ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) |
649 |
626 648
|
eqeq12d |
⊢ ( 𝑛 = 𝑙 → ( Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑛 ) ↔ Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) ) |
650 |
647 649
|
imbi12d |
⊢ ( 𝑛 = 𝑙 → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) ) ) |
651 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) |
652 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
653 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
654 |
653
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( cos ‘ ( 𝑗 · 𝑋 ) ) = ( cos ‘ ( 𝑘 · 𝑋 ) ) ) |
655 |
652 654
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ) |
656 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑘 ) ) |
657 |
653
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( sin ‘ ( 𝑗 · 𝑋 ) ) = ( sin ‘ ( 𝑘 · 𝑋 ) ) ) |
658 |
656 657
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) |
659 |
655 658
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
660 |
659
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝑗 = 𝑘 ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
661 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
662 |
661
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
663 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
664 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
665 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
666 |
665
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
667 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ℝ ) |
668 |
666 667
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 · 𝑋 ) ∈ ℝ ) |
669 |
668
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( cos ‘ ( 𝑘 · 𝑋 ) ) ∈ ℝ ) |
670 |
576 669
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ∈ ℝ ) |
671 |
664 670
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) ∈ ℝ ) |
672 |
664 668
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑋 ) ∈ ℝ ) |
673 |
672
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( sin ‘ ( 𝑘 · 𝑋 ) ) ∈ ℝ ) |
674 |
592 673
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ∈ ℝ ) |
675 |
671 674
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℝ ) |
676 |
663 662 675
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℝ ) |
677 |
651 660 662 676
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) |
678 |
363 39
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
679 |
676
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ∈ ℂ ) |
680 |
677 678 679
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑛 ) ) |
681 |
650 680
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) |
682 |
645 681
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ‘ 𝑙 ) = ( seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) |
683 |
39 558 623 40 682
|
climeq |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( cos ‘ ( 𝑘 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( sin ‘ ( 𝑘 · 𝑋 ) ) ) ) ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ↔ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) ) |
684 |
621 683
|
mpbid |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
685 |
38 684
|
eqbrtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝑆 ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
686 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ) |
687 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑛 ) ) |
688 |
|
oveq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
689 |
688
|
fveq2d |
⊢ ( 𝑗 = 𝑛 → ( cos ‘ ( 𝑗 · 𝑋 ) ) = ( cos ‘ ( 𝑛 · 𝑋 ) ) ) |
690 |
687 689
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) ) |
691 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑛 ) ) |
692 |
688
|
fveq2d |
⊢ ( 𝑗 = 𝑛 → ( sin ‘ ( 𝑗 · 𝑋 ) ) = ( sin ‘ ( 𝑛 · 𝑋 ) ) ) |
693 |
691 692
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) = ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) |
694 |
690 693
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
695 |
694
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 = 𝑛 ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
696 |
686 695 363 596
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑗 ) · ( cos ‘ ( 𝑗 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑗 ) · ( sin ‘ ( 𝑗 · 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) |
697 |
596
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ∈ ℂ ) |
698 |
39 40 696 697 684
|
isumclim |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) = ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) |
699 |
698
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( ( 𝐴 ‘ 0 ) / 2 ) + ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) ) |
700 |
503 505
|
addcld |
⊢ ( 𝜑 → ( 𝐿 + 𝑅 ) ∈ ℂ ) |
701 |
700
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐿 + 𝑅 ) / 2 ) ∈ ℂ ) |
702 |
556 701
|
pncan3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) |
703 |
699 702
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) |
704 |
685 703
|
jca |
⊢ ( 𝜑 → ( seq 1 ( + , 𝑆 ) ⇝ ( ( ( 𝐿 + 𝑅 ) / 2 ) − ( ( 𝐴 ‘ 0 ) / 2 ) ) ∧ ( ( ( 𝐴 ‘ 0 ) / 2 ) + Σ 𝑛 ∈ ℕ ( ( ( 𝐴 ‘ 𝑛 ) · ( cos ‘ ( 𝑛 · 𝑋 ) ) ) + ( ( 𝐵 ‘ 𝑛 ) · ( sin ‘ ( 𝑛 · 𝑋 ) ) ) ) ) = ( ( 𝐿 + 𝑅 ) / 2 ) ) ) |