| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem112.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | fourierdlem112.d | ⊢ 𝐷  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 3 |  | fourierdlem112.p | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 4 |  | fourierdlem112.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | fourierdlem112.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 6 |  | fourierdlem112.n | ⊢ 𝑁  =  ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 7 |  | fourierdlem112.v | ⊢ 𝑉  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 8 |  | fourierdlem112.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 9 |  | fourierdlem112.xran | ⊢ ( 𝜑  →  𝑋  ∈  ran  𝑉 ) | 
						
							| 10 |  | fourierdlem112.t | ⊢ 𝑇  =  ( 2  ·  π ) | 
						
							| 11 |  | fourierdlem112.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | fourierdlem112.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 13 |  | fourierdlem112.c | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 14 |  | fourierdlem112.u | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 15 |  | fourierdlem112.fdvcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 16 |  | fourierdlem112.e | ⊢ ( 𝜑  →  𝐸  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 17 |  | fourierdlem112.i | ⊢ ( 𝜑  →  𝐼  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) ) | 
						
							| 18 |  | fourierdlem112.l | ⊢ ( 𝜑  →  𝐿  ∈  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 19 |  | fourierdlem112.r | ⊢ ( 𝜑  →  𝑅  ∈  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 ) ) | 
						
							| 20 |  | fourierdlem112.a | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 21 |  | fourierdlem112.b | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 22 |  | fourierdlem112.z | ⊢ 𝑍  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 23 |  | fourierdlem112.23 | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 24 |  | fourierdlem112.fbd | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ℝ ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 25 |  | fourierdlem112.fdvbd | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 26 |  | fourierdlem112.25 | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ·  𝑋 )  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑛  =  𝑗  →  ( cos ‘ ( 𝑛  ·  𝑋 ) )  =  ( cos ‘ ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 30 | 27 29 | oveq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐵 ‘ 𝑛 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 32 | 28 | fveq2d | ⊢ ( 𝑛  =  𝑗  →  ( sin ‘ ( 𝑛  ·  𝑋 ) )  =  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 33 | 31 32 | oveq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) | 
						
							| 34 | 30 33 | oveq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) | 
						
							| 35 | 34 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) | 
						
							| 36 | 23 35 | eqtri | ⊢ 𝑆  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) | 
						
							| 37 |  | seqeq3 | ⊢ ( 𝑆  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) )  →  seq 1 (  +  ,  𝑆 )  =  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ) | 
						
							| 38 | 36 37 | mp1i | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝑆 )  =  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ) | 
						
							| 39 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 40 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 41 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑛 ℕ | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑛 ( - π (,) 0 ) | 
						
							| 44 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑛  · | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) | 
						
							| 47 | 44 45 46 | nfov | ⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) ) | 
						
							| 48 | 43 47 | nfitg | ⊢ Ⅎ 𝑛 ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 | 
						
							| 49 | 42 48 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 50 |  | nfcv | ⊢ Ⅎ 𝑛 ( 0 (,) π ) | 
						
							| 51 | 50 47 | nfitg | ⊢ Ⅎ 𝑛 ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 | 
						
							| 52 | 42 51 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 53 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 54 | 20 53 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑛 0 | 
						
							| 56 | 54 55 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 0 ) | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑛  / | 
						
							| 58 |  | nfcv | ⊢ Ⅎ 𝑛 2 | 
						
							| 59 | 56 57 58 | nfov | ⊢ Ⅎ 𝑛 ( ( 𝐴 ‘ 0 )  /  2 ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛  + | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑛 ( 1 ... 𝑚 ) | 
						
							| 62 | 61 | nfsum1 | ⊢ Ⅎ 𝑛 Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 63 | 59 60 62 | nfov | ⊢ Ⅎ 𝑛 ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 64 | 42 63 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 65 | 22 64 | nfcxfr | ⊢ Ⅎ 𝑛 𝑍 | 
						
							| 66 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 67 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 68 | 67 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 69 | 67 67 | subnegi | ⊢ ( π  −  - π )  =  ( π  +  π ) | 
						
							| 70 | 68 10 69 | 3eqtr4i | ⊢ 𝑇  =  ( π  −  - π ) | 
						
							| 71 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 73 | 72 | renegcld | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 74 | 73 26 | readdcld | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  ∈  ℝ ) | 
						
							| 75 | 72 26 | readdcld | ⊢ ( 𝜑  →  ( π  +  𝑋 )  ∈  ℝ ) | 
						
							| 76 |  | negpilt0 | ⊢ - π  <  0 | 
						
							| 77 |  | pipos | ⊢ 0  <  π | 
						
							| 78 | 71 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 79 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 80 | 78 79 71 | lttri | ⊢ ( ( - π  <  0  ∧  0  <  π )  →  - π  <  π ) | 
						
							| 81 | 76 77 80 | mp2an | ⊢ - π  <  π | 
						
							| 82 | 81 | a1i | ⊢ ( 𝜑  →  - π  <  π ) | 
						
							| 83 | 73 72 26 82 | ltadd1dd | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  <  ( π  +  𝑋 ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 85 | 84 | eleq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 86 | 85 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 87 | 86 | cbvrabv | ⊢ { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑥  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 88 | 87 | uneq2i | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑥  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 89 | 70 3 4 5 74 75 83 66 88 6 7 | fourierdlem54 | ⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℕ  ∧  𝑉  ∈  ( ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑁 ) )  ∧  𝑉  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 90 | 89 | simpld | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑉  ∈  ( ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑁 ) ) ) | 
						
							| 91 | 90 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 92 | 90 | simprd | ⊢ ( 𝜑  →  𝑉  ∈  ( ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑁 ) ) | 
						
							| 93 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑗 ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 97 | 94 96 | breq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 98 | 97 | cbvralvw | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 99 | 98 | anbi2i | ⊢ ( ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 100 | 99 | a1i | ⊢ ( 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  →  ( ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 101 | 100 | rabbiia | ⊢ { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  =  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } | 
						
							| 102 | 101 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 103 | 3 102 | eqtri | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 104 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 105 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 106 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 107 |  | eleq1w | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 108 | 107 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 109 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 110 | 95 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 111 | 109 110 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 112 | 111 | reseq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 113 | 111 | oveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  =  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 114 | 112 113 | eleq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  ↔  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) ) | 
						
							| 115 | 108 114 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) ) ) | 
						
							| 116 | 115 12 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 117 | 116 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 118 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( - π  +  𝑋 )  ∈  ℝ ) | 
						
							| 119 | 74 | rexrd | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  ∈  ℝ* ) | 
						
							| 120 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 121 | 120 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 122 | 75 | ltpnfd | ⊢ ( 𝜑  →  ( π  +  𝑋 )  <  +∞ ) | 
						
							| 123 | 119 121 75 83 122 | eliood | ⊢ ( 𝜑  →  ( π  +  𝑋 )  ∈  ( ( - π  +  𝑋 ) (,) +∞ ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( π  +  𝑋 )  ∈  ( ( - π  +  𝑋 ) (,) +∞ ) ) | 
						
							| 125 |  | id | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑁 )  →  𝑖  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 126 | 6 | oveq2i | ⊢ ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) | 
						
							| 127 | 125 126 | eleqtrdi | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑁 )  →  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ) | 
						
							| 129 | 6 | oveq2i | ⊢ ( 0 ... 𝑁 )  =  ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) | 
						
							| 130 |  | isoeq4 | ⊢ ( ( 0 ... 𝑁 )  =  ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) )  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 131 | 129 130 | ax-mp | ⊢ ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 132 | 131 | iotabii | ⊢ ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 133 | 7 132 | eqtri | ⊢ 𝑉  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 134 | 93 103 70 104 105 106 117 118 124 128 133 | fourierdlem98 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 135 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑤  ∈  ℝ ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 136 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 | 
						
							| 137 |  | elioore | ⊢ ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 138 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤  ∧  𝑡  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 139 | 137 138 | sylan2 | ⊢ ( ( ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 140 | 139 | ex | ⊢ ( ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤  →  ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) ) | 
						
							| 141 | 136 140 | ralrimi | ⊢ ( ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤  →  ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 142 | 141 | reximi | ⊢ ( ∃ 𝑤  ∈  ℝ ∀ 𝑡  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤  →  ∃ 𝑤  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 143 | 135 142 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑤  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) )  ≤  𝑤 ) | 
						
							| 144 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 145 |  | dvfre | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 146 | 1 144 145 | sylancl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 148 |  | eqid | ⊢ ( ℝ  D  𝐹 )  =  ( ℝ  D  𝐹 ) | 
						
							| 149 | 71 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  π  ∈  ℝ ) | 
						
							| 150 | 78 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  - π  ∈  ℝ ) | 
						
							| 151 | 111 | reseq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 152 | 151 113 | eleq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  ↔  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) ) | 
						
							| 153 | 108 152 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) ) ) | 
						
							| 154 | 153 15 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 155 | 154 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 156 | 73 8 | readdcld | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  ∈  ℝ ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( - π  +  𝑋 )  ∈  ℝ ) | 
						
							| 158 | 156 | rexrd | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  ∈  ℝ* ) | 
						
							| 159 | 72 8 | readdcld | ⊢ ( 𝜑  →  ( π  +  𝑋 )  ∈  ℝ ) | 
						
							| 160 | 73 72 8 82 | ltadd1dd | ⊢ ( 𝜑  →  ( - π  +  𝑋 )  <  ( π  +  𝑋 ) ) | 
						
							| 161 | 159 | ltpnfd | ⊢ ( 𝜑  →  ( π  +  𝑋 )  <  +∞ ) | 
						
							| 162 | 158 121 159 160 161 | eliood | ⊢ ( 𝜑  →  ( π  +  𝑋 )  ∈  ( ( - π  +  𝑋 ) (,) +∞ ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( π  +  𝑋 )  ∈  ( ( - π  +  𝑋 ) (,) +∞ ) ) | 
						
							| 164 |  | oveq1 | ⊢ ( 𝑘  =  ℎ  →  ( 𝑘  ·  𝑇 )  =  ( ℎ  ·  𝑇 ) ) | 
						
							| 165 | 164 | oveq2d | ⊢ ( 𝑘  =  ℎ  →  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( ℎ  ·  𝑇 ) ) ) | 
						
							| 166 | 165 | eleq1d | ⊢ ( 𝑘  =  ℎ  →  ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 167 | 166 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 168 | 167 | rgenw | ⊢ ∀ 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) ) ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 169 |  | rabbi | ⊢ ( ∀ 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) ) ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 )  ↔  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 170 | 168 169 | mpbi | ⊢ { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 171 | 170 | uneq2i | ⊢ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 172 |  | isoeq5 | ⊢ ( ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 173 | 171 172 | ax-mp | ⊢ ( 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 174 | 173 | iotabii | ⊢ ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 175 | 133 174 | eqtri | ⊢ 𝑉  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( - π  +  𝑋 ) ,  ( π  +  𝑋 ) }  ∪  { 𝑦  ∈  ( ( - π  +  𝑋 ) [,] ( π  +  𝑋 ) )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 176 |  | eleq1w | ⊢ ( 𝑣  =  𝑢  →  ( 𝑣  ∈  dom  ( ℝ  D  𝐹 )  ↔  𝑢  ∈  dom  ( ℝ  D  𝐹 ) ) ) | 
						
							| 177 |  | fveq2 | ⊢ ( 𝑣  =  𝑢  →  ( ( ℝ  D  𝐹 ) ‘ 𝑣 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) | 
						
							| 178 | 176 177 | ifbieq1d | ⊢ ( 𝑣  =  𝑢  →  if ( 𝑣  ∈  dom  ( ℝ  D  𝐹 ) ,  ( ( ℝ  D  𝐹 ) ‘ 𝑣 ) ,  0 )  =  if ( 𝑢  ∈  dom  ( ℝ  D  𝐹 ) ,  ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ,  0 ) ) | 
						
							| 179 | 178 | cbvmptv | ⊢ ( 𝑣  ∈  ℝ  ↦  if ( 𝑣  ∈  dom  ( ℝ  D  𝐹 ) ,  ( ( ℝ  D  𝐹 ) ‘ 𝑣 ) ,  0 ) )  =  ( 𝑢  ∈  ℝ  ↦  if ( 𝑢  ∈  dom  ( ℝ  D  𝐹 ) ,  ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ,  0 ) ) | 
						
							| 180 | 93 148 103 149 150 70 104 105 106 155 157 163 128 175 179 | fourierdlem97 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 181 |  | cncff | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 182 |  | fdm | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 183 | 180 181 182 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 184 |  | ssdmres | ⊢ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 185 | 183 184 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 186 | 147 185 | fssresd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 187 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 188 | 187 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 189 |  | cncfcdm | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ )  ↔  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) ) | 
						
							| 190 | 188 180 189 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ )  ↔  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) ) | 
						
							| 191 | 186 190 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ ) ) | 
						
							| 192 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 193 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 194 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 | 
						
							| 195 | 193 194 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 196 |  | fvres | ⊢ ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 197 | 196 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 198 | 197 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 199 | 198 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 200 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 201 | 185 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 202 | 201 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 203 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 204 | 200 202 203 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 205 | 199 204 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 206 | 205 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 207 | 195 206 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 208 | 207 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 209 | 208 | reximdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 210 | 192 209 | mpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 211 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 | 
						
							| 212 | 196 | eqcomd | ⊢ ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 213 | 212 | fveq2d | ⊢ ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 214 | 213 | adantl | ⊢ ( ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 215 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 216 | 214 215 | eqbrtrd | ⊢ ( ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 217 | 216 | ex | ⊢ ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  →  ( 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 218 | 211 217 | ralrimi | ⊢ ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 219 | 218 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 220 | 219 | reximdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 221 | 210 220 | mpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 222 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 223 |  | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑗  /  𝑖 ⦌ 𝐶 | 
						
							| 224 | 223 | nfel1 | ⊢ Ⅎ 𝑖 ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 225 | 222 224 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 226 |  | csbeq1a | ⊢ ( 𝑖  =  𝑗  →  𝐶  =  ⦋ 𝑗  /  𝑖 ⦌ 𝐶 ) | 
						
							| 227 | 112 109 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 228 | 226 227 | eleq12d | ⊢ ( 𝑖  =  𝑗  →  ( 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ↔  ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 229 | 108 228 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) ) ) | 
						
							| 230 | 225 229 13 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 231 | 230 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝐶  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 232 | 93 103 70 104 105 106 117 231 118 124 128 133 | fourierdlem96 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) )  =  ( 𝑄 ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { 𝑓  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑓 )  ≤  ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐶 ) ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { 𝑓  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑓 )  ≤  ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( 𝐹 ‘ ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑉 ‘ 𝑖 ) ) ) | 
						
							| 233 |  | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑗  /  𝑖 ⦌ 𝑈 | 
						
							| 234 | 233 | nfel1 | ⊢ Ⅎ 𝑖 ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 235 | 222 234 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 236 |  | csbeq1a | ⊢ ( 𝑖  =  𝑗  →  𝑈  =  ⦋ 𝑗  /  𝑖 ⦌ 𝑈 ) | 
						
							| 237 | 112 110 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 238 | 236 237 | eleq12d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 239 | 108 238 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 240 | 235 239 14 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 241 | 240 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ⦋ 𝑗  /  𝑖 ⦌ 𝑈  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 242 | 93 103 70 104 105 106 117 241 157 163 128 133 | fourierdlem99 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( ( ( 𝑦  ∈  ℝ  ↦  sup ( { ℎ  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ ℎ )  ≤  ( ( 𝑔  ∈  ( - π (,] π )  ↦  if ( 𝑔  =  π ,  - π ,  𝑔 ) ) ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) )  +  1 ) ) ,  ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝑈 ) ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { ℎ  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ ℎ )  ≤  ( ( 𝑔  ∈  ( - π (,] π )  ↦  if ( 𝑔  =  π ,  - π ,  𝑔 ) ) ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( 𝐹 ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 243 |  | eqeq1 | ⊢ ( 𝑔  =  𝑠  →  ( 𝑔  =  0  ↔  𝑠  =  0 ) ) | 
						
							| 244 |  | oveq2 | ⊢ ( 𝑔  =  𝑠  →  ( 𝑋  +  𝑔 )  =  ( 𝑋  +  𝑠 ) ) | 
						
							| 245 | 244 | fveq2d | ⊢ ( 𝑔  =  𝑠  →  ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 246 |  | breq2 | ⊢ ( 𝑔  =  𝑠  →  ( 0  <  𝑔  ↔  0  <  𝑠 ) ) | 
						
							| 247 | 246 | ifbid | ⊢ ( 𝑔  =  𝑠  →  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 )  =  if ( 0  <  𝑠 ,  𝑅 ,  𝐿 ) ) | 
						
							| 248 | 245 247 | oveq12d | ⊢ ( 𝑔  =  𝑠  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  −  if ( 0  <  𝑠 ,  𝑅 ,  𝐿 ) ) ) | 
						
							| 249 |  | id | ⊢ ( 𝑔  =  𝑠  →  𝑔  =  𝑠 ) | 
						
							| 250 | 248 249 | oveq12d | ⊢ ( 𝑔  =  𝑠  →  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 )  =  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  −  if ( 0  <  𝑠 ,  𝑅 ,  𝐿 ) )  /  𝑠 ) ) | 
						
							| 251 | 243 250 | ifbieq2d | ⊢ ( 𝑔  =  𝑠  →  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) )  =  if ( 𝑠  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  −  if ( 0  <  𝑠 ,  𝑅 ,  𝐿 ) )  /  𝑠 ) ) ) | 
						
							| 252 | 251 | cbvmptv | ⊢ ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  if ( 𝑠  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  −  if ( 0  <  𝑠 ,  𝑅 ,  𝐿 ) )  /  𝑠 ) ) ) | 
						
							| 253 |  | eqeq1 | ⊢ ( 𝑜  =  𝑠  →  ( 𝑜  =  0  ↔  𝑠  =  0 ) ) | 
						
							| 254 |  | id | ⊢ ( 𝑜  =  𝑠  →  𝑜  =  𝑠 ) | 
						
							| 255 |  | oveq1 | ⊢ ( 𝑜  =  𝑠  →  ( 𝑜  /  2 )  =  ( 𝑠  /  2 ) ) | 
						
							| 256 | 255 | fveq2d | ⊢ ( 𝑜  =  𝑠  →  ( sin ‘ ( 𝑜  /  2 ) )  =  ( sin ‘ ( 𝑠  /  2 ) ) ) | 
						
							| 257 | 256 | oveq2d | ⊢ ( 𝑜  =  𝑠  →  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) )  =  ( 2  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) | 
						
							| 258 | 254 257 | oveq12d | ⊢ ( 𝑜  =  𝑠  →  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) )  =  ( 𝑠  /  ( 2  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) | 
						
							| 259 | 253 258 | ifbieq2d | ⊢ ( 𝑜  =  𝑠  →  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) )  =  if ( 𝑠  =  0 ,  1 ,  ( 𝑠  /  ( 2  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) | 
						
							| 260 | 259 | cbvmptv | ⊢ ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  if ( 𝑠  =  0 ,  1 ,  ( 𝑠  /  ( 2  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) | 
						
							| 261 |  | fveq2 | ⊢ ( 𝑟  =  𝑠  →  ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  =  ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑠 ) ) | 
						
							| 262 |  | fveq2 | ⊢ ( 𝑟  =  𝑠  →  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 )  =  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑠 ) ) | 
						
							| 263 | 261 262 | oveq12d | ⊢ ( 𝑟  =  𝑠  →  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) )  =  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑠 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 264 | 263 | cbvmptv | ⊢ ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑠 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 265 |  | oveq2 | ⊢ ( 𝑑  =  𝑠  →  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 )  =  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) ) | 
						
							| 266 | 265 | fveq2d | ⊢ ( 𝑑  =  𝑠  →  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) )  =  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) | 
						
							| 267 | 266 | cbvmptv | ⊢ ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) | 
						
							| 268 |  | fveq2 | ⊢ ( 𝑧  =  𝑠  →  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  =  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) ) | 
						
							| 269 |  | fveq2 | ⊢ ( 𝑧  =  𝑠  →  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 )  =  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑠 ) ) | 
						
							| 270 | 268 269 | oveq12d | ⊢ ( 𝑧  =  𝑠  →  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) )  =  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 271 | 270 | cbvmptv | ⊢ ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 272 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐷 ‘ 𝑚 )  =  ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 273 | 272 | fveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 274 | 273 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 275 | 274 | adantr | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑠  ∈  ( - π (,) 0 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 276 | 275 | itgeq2dv | ⊢ ( 𝑚  =  𝑛  →  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 277 | 276 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  =  ( 𝑛  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 278 |  | oveq1 | ⊢ ( 𝑐  =  𝑘  →  ( 𝑐  +  ( 1  /  2 ) )  =  ( 𝑘  +  ( 1  /  2 ) ) ) | 
						
							| 279 | 278 | oveq1d | ⊢ ( 𝑐  =  𝑘  →  ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 )  =  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) | 
						
							| 280 | 279 | fveq2d | ⊢ ( 𝑐  =  𝑘  →  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) )  =  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) | 
						
							| 281 | 280 | mpteq2dv | ⊢ ( 𝑐  =  𝑘  →  ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) )  =  ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ) | 
						
							| 282 | 281 | fveq1d | ⊢ ( 𝑐  =  𝑘  →  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 )  =  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) | 
						
							| 283 | 282 | oveq2d | ⊢ ( 𝑐  =  𝑘  →  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) )  =  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) | 
						
							| 284 | 283 | mpteq2dv | ⊢ ( 𝑐  =  𝑘  →  ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 285 | 284 | fveq1d | ⊢ ( 𝑐  =  𝑘  →  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  =  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) | 
						
							| 286 | 285 | adantr | ⊢ ( ( 𝑐  =  𝑘  ∧  𝑠  ∈  ( - π (,) 0 ) )  →  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  =  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) | 
						
							| 287 | 286 | itgeq2dv | ⊢ ( 𝑐  =  𝑘  →  ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  =  ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠 ) | 
						
							| 288 | 287 | oveq1d | ⊢ ( 𝑐  =  𝑘  →  ( ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π )  =  ( ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) ) | 
						
							| 289 | 288 | cbvmptv | ⊢ ( 𝑐  ∈  ℕ  ↦  ( ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ∫ ( - π (,) 0 ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) ) | 
						
							| 290 |  | oveq1 | ⊢ ( 𝑦  =  𝑠  →  ( 𝑦  mod  ( 2  ·  π ) )  =  ( 𝑠  mod  ( 2  ·  π ) ) ) | 
						
							| 291 | 290 | eqeq1d | ⊢ ( 𝑦  =  𝑠  →  ( ( 𝑦  mod  ( 2  ·  π ) )  =  0  ↔  ( 𝑠  mod  ( 2  ·  π ) )  =  0 ) ) | 
						
							| 292 |  | oveq2 | ⊢ ( 𝑦  =  𝑠  →  ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 )  =  ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) ) | 
						
							| 293 | 292 | fveq2d | ⊢ ( 𝑦  =  𝑠  →  ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  =  ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) | 
						
							| 294 |  | oveq1 | ⊢ ( 𝑦  =  𝑠  →  ( 𝑦  /  2 )  =  ( 𝑠  /  2 ) ) | 
						
							| 295 | 294 | fveq2d | ⊢ ( 𝑦  =  𝑠  →  ( sin ‘ ( 𝑦  /  2 ) )  =  ( sin ‘ ( 𝑠  /  2 ) ) ) | 
						
							| 296 | 295 | oveq2d | ⊢ ( 𝑦  =  𝑠  →  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) )  =  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) | 
						
							| 297 | 293 296 | oveq12d | ⊢ ( 𝑦  =  𝑠  →  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) | 
						
							| 298 | 291 297 | ifbieq2d | ⊢ ( 𝑦  =  𝑠  →  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) )  =  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) | 
						
							| 299 | 298 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) )  =  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) | 
						
							| 300 |  | simpl | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  𝑚  =  𝑘 ) | 
						
							| 301 | 300 | oveq2d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( 2  ·  𝑚 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 302 | 301 | oveq1d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( ( 2  ·  𝑚 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 303 | 302 | oveq1d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) )  =  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ) | 
						
							| 304 | 300 | oveq1d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( 𝑚  +  ( 1  /  2 ) )  =  ( 𝑘  +  ( 1  /  2 ) ) ) | 
						
							| 305 | 304 | oveq1d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 )  =  ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) ) | 
						
							| 306 | 305 | fveq2d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  =  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) | 
						
							| 307 | 306 | oveq1d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) | 
						
							| 308 | 303 307 | ifeq12d | ⊢ ( ( 𝑚  =  𝑘  ∧  𝑠  ∈  ℝ )  →  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) )  =  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) | 
						
							| 309 | 308 | mpteq2dva | ⊢ ( 𝑚  =  𝑘  →  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) )  =  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) ) | 
						
							| 310 | 299 309 | eqtrid | ⊢ ( 𝑚  =  𝑘  →  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) )  =  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) ) | 
						
							| 311 | 310 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) ) | 
						
							| 312 | 2 311 | eqtri | ⊢ 𝐷  =  ( 𝑘  ∈  ℕ  ↦  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) ) | 
						
							| 313 |  | eqid | ⊢ ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) )  ↾  ( - π [,] 𝑙 ) )  =  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) )  ↾  ( - π [,] 𝑙 ) ) | 
						
							| 314 |  | eqid | ⊢ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) )  =  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) | 
						
							| 315 |  | eqid | ⊢ ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 )  =  ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) | 
						
							| 316 |  | isoeq1 | ⊢ ( 𝑢  =  𝑤  →  ( 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  ↔  𝑤  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) ) | 
						
							| 317 | 316 | cbviotavw | ⊢ ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) )  =  ( ℩ 𝑤 𝑤  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) | 
						
							| 318 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑉 ‘ 𝑗 )  =  ( 𝑉 ‘ 𝑖 ) ) | 
						
							| 319 | 318 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 320 | 319 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 321 |  | eqid | ⊢ ( ℩ 𝑚  ∈  ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) ‘ ( 𝑏  +  1 ) ) )  ⊆  ( ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ 𝑚 ) (,) ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ ( 𝑚  +  1 ) ) ) )  =  ( ℩ 𝑚  ∈  ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) )  −  1 ) ) ,  ( { - π ,  𝑙 }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( - π (,) 𝑙 ) ) ) ) ) ‘ ( 𝑏  +  1 ) ) )  ⊆  ( ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ 𝑚 ) (,) ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 322 |  | fveq2 | ⊢ ( 𝑎  =  𝑠  →  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  =  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 ) ) | 
						
							| 323 |  | oveq2 | ⊢ ( 𝑎  =  𝑠  →  ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 )  =  ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) | 
						
							| 324 | 323 | fveq2d | ⊢ ( 𝑎  =  𝑠  →  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) )  =  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) | 
						
							| 325 | 322 324 | oveq12d | ⊢ ( 𝑎  =  𝑠  →  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  =  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) ) ) | 
						
							| 326 | 325 | cbvitgv | ⊢ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎  =  ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 | 
						
							| 327 | 326 | fveq2i | ⊢ ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  =  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 ) | 
						
							| 328 | 327 | breq1i | ⊢ ( ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑖  /  2 )  ↔  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑖  /  2 ) ) | 
						
							| 329 | 328 | anbi2i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ℝ+ )  ∧  𝑙  ∈  ( - π (,) 0 ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑖  /  2 ) )  ↔  ( ( ( ( 𝜑  ∧  𝑖  ∈  ℝ+ )  ∧  𝑙  ∈  ( - π (,) 0 ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑖  /  2 ) ) ) | 
						
							| 330 | 325 | cbvitgv | ⊢ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎  =  ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 | 
						
							| 331 | 330 | fveq2i | ⊢ ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  =  ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 ) | 
						
							| 332 | 331 | breq1i | ⊢ ( ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑖  /  2 )  ↔  ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑖  /  2 ) ) | 
						
							| 333 | 329 332 | anbi12i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ℝ+ )  ∧  𝑙  ∈  ( - π (,) 0 ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑖  /  2 ) )  ∧  ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑖  /  2 ) )  ↔  ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ℝ+ )  ∧  𝑙  ∈  ( - π (,) 0 ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 𝑙 (,) 0 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑖  /  2 ) )  ∧  ( abs ‘ ∫ ( - π (,) 𝑙 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑖  /  2 ) ) ) | 
						
							| 334 | 1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 277 289 19 18 16 17 312 313 314 315 317 320 321 333 | fourierdlem103 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  ⇝  ( 𝐿  /  2 ) ) | 
						
							| 335 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 336 | 335 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) )  ∈  V | 
						
							| 337 | 22 336 | eqeltri | ⊢ 𝑍  ∈  V | 
						
							| 338 | 337 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 339 | 274 | adantr | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 340 | 339 | itgeq2dv | ⊢ ( 𝑚  =  𝑛  →  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 341 | 340 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  =  ( 𝑛  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 342 | 285 | adantr | ⊢ ( ( 𝑐  =  𝑘  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  =  ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 ) ) | 
						
							| 343 | 342 | itgeq2dv | ⊢ ( 𝑐  =  𝑘  →  ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  =  ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠 ) | 
						
							| 344 | 343 | oveq1d | ⊢ ( 𝑐  =  𝑘  →  ( ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π )  =  ( ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) ) | 
						
							| 345 | 344 | cbvmptv | ⊢ ( 𝑐  ∈  ℕ  ↦  ( ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑐  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ∫ ( 0 (,) π ) ( ( 𝑧  ∈  ( - π [,] π )  ↦  ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑧 )  ·  ( ( 𝑑  ∈  ( - π [,] π )  ↦  ( sin ‘ ( ( 𝑘  +  ( 1  /  2 ) )  ·  𝑑 ) ) ) ‘ 𝑧 ) ) ) ‘ 𝑠 )  d 𝑠  /  π ) ) | 
						
							| 346 |  | eqid | ⊢ ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) )  ↾  ( 𝑒 [,] π ) )  =  ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) )  ↾  ( 𝑒 [,] π ) ) | 
						
							| 347 |  | eqid | ⊢ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) )  =  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) | 
						
							| 348 |  | eqid | ⊢ ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 )  =  ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) | 
						
							| 349 |  | isoeq1 | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  ↔  𝑣  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) ) | 
						
							| 350 | 349 | cbviotavw | ⊢ ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) )  =  ( ℩ 𝑣 𝑣  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) | 
						
							| 351 |  | eqid | ⊢ ( ℩ 𝑎  ∈  ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) ‘ ( 𝑏  +  1 ) ) )  ⊆  ( ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ 𝑎 ) (,) ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ ( 𝑎  +  1 ) ) ) )  =  ( ℩ 𝑎  ∈  ( 0 ..^ 𝑁 ) ( ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) ‘ 𝑏 ) (,) ( ( ℩ 𝑢 𝑢  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) )  −  1 ) ) ,  ( { 𝑒 ,  π }  ∪  ( ran  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) )  ∩  ( 𝑒 (,) π ) ) ) ) ) ‘ ( 𝑏  +  1 ) ) )  ⊆  ( ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ 𝑎 ) (,) ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑉 ‘ 𝑗 )  −  𝑋 ) ) ‘ ( 𝑎  +  1 ) ) ) ) | 
						
							| 352 | 325 | cbvitgv | ⊢ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎  =  ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 | 
						
							| 353 | 352 | fveq2i | ⊢ ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  =  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 ) | 
						
							| 354 | 353 | breq1i | ⊢ ( ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑞  /  2 )  ↔  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑞  /  2 ) ) | 
						
							| 355 | 354 | anbi2i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑞  ∈  ℝ+ )  ∧  𝑒  ∈  ( 0 (,) π ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑞  /  2 ) )  ↔  ( ( ( ( 𝜑  ∧  𝑞  ∈  ℝ+ )  ∧  𝑒  ∈  ( 0 (,) π ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑞  /  2 ) ) ) | 
						
							| 356 | 325 | cbvitgv | ⊢ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎  =  ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 | 
						
							| 357 | 356 | fveq2i | ⊢ ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  =  ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 ) | 
						
							| 358 | 357 | breq1i | ⊢ ( ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑞  /  2 )  ↔  ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑞  /  2 ) ) | 
						
							| 359 | 355 358 | anbi12i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑞  ∈  ℝ+ )  ∧  𝑒  ∈  ( 0 (,) π ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑞  /  2 ) )  ∧  ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑎 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑎 ) ) )  d 𝑎 )  <  ( 𝑞  /  2 ) )  ↔  ( ( ( ( ( 𝜑  ∧  𝑞  ∈  ℝ+ )  ∧  𝑒  ∈  ( 0 (,) π ) )  ∧  𝑏  ∈  ℕ )  ∧  ( abs ‘ ∫ ( 0 (,) 𝑒 ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑞  /  2 ) )  ∧  ( abs ‘ ∫ ( 𝑒 (,) π ) ( ( ( 𝑟  ∈  ( - π [,] π )  ↦  ( ( ( 𝑔  ∈  ( - π [,] π )  ↦  if ( 𝑔  =  0 ,  0 ,  ( ( ( 𝐹 ‘ ( 𝑋  +  𝑔 ) )  −  if ( 0  <  𝑔 ,  𝑅 ,  𝐿 ) )  /  𝑔 ) ) ) ‘ 𝑟 )  ·  ( ( 𝑜  ∈  ( - π [,] π )  ↦  if ( 𝑜  =  0 ,  1 ,  ( 𝑜  /  ( 2  ·  ( sin ‘ ( 𝑜  /  2 ) ) ) ) ) ) ‘ 𝑟 ) ) ) ‘ 𝑠 )  ·  ( sin ‘ ( ( 𝑏  +  ( 1  /  2 ) )  ·  𝑠 ) ) )  d 𝑠 )  <  ( 𝑞  /  2 ) ) ) | 
						
							| 360 | 1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 341 345 19 18 16 17 312 346 347 348 350 320 351 359 | fourierdlem104 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  ⇝  ( 𝑅  /  2 ) ) | 
						
							| 361 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  =  ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 362 | 276 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  =  𝑛 )  →  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 363 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 364 |  | elioore | ⊢ ( 𝑠  ∈  ( - π (,) 0 )  →  𝑠  ∈  ℝ ) | 
						
							| 365 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 366 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑋  ∈  ℝ ) | 
						
							| 367 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑠  ∈  ℝ ) | 
						
							| 368 | 366 367 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 369 | 365 368 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 370 | 369 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 371 | 2 | dirkerre | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 372 | 371 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 373 | 370 372 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℝ ) | 
						
							| 374 | 364 373 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) 0 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℝ ) | 
						
							| 375 |  | ioossicc | ⊢ ( - π (,) 0 )  ⊆  ( - π [,] 0 ) | 
						
							| 376 | 78 | leidi | ⊢ - π  ≤  - π | 
						
							| 377 | 79 71 77 | ltleii | ⊢ 0  ≤  π | 
						
							| 378 |  | iccss | ⊢ ( ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  ∧  ( - π  ≤  - π  ∧  0  ≤  π ) )  →  ( - π [,] 0 )  ⊆  ( - π [,] π ) ) | 
						
							| 379 | 78 71 376 377 378 | mp4an | ⊢ ( - π [,] 0 )  ⊆  ( - π [,] π ) | 
						
							| 380 | 375 379 | sstri | ⊢ ( - π (,) 0 )  ⊆  ( - π [,] π ) | 
						
							| 381 | 380 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - π (,) 0 )  ⊆  ( - π [,] π ) ) | 
						
							| 382 |  | ioombl | ⊢ ( - π (,) 0 )  ∈  dom  vol | 
						
							| 383 | 382 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - π (,) 0 )  ∈  dom  vol ) | 
						
							| 384 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] π ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 385 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] π ) )  →  𝑋  ∈  ℝ ) | 
						
							| 386 | 73 72 | iccssred | ⊢ ( 𝜑  →  ( - π [,] π )  ⊆  ℝ ) | 
						
							| 387 | 386 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 388 | 385 387 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 389 | 384 388 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 390 | 389 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 391 |  | iccssre | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - π [,] π )  ⊆  ℝ ) | 
						
							| 392 | 78 71 391 | mp2an | ⊢ ( - π [,] π )  ⊆  ℝ | 
						
							| 393 | 392 | sseli | ⊢ ( 𝑠  ∈  ( - π [,] π )  →  𝑠  ∈  ℝ ) | 
						
							| 394 | 393 371 | sylan2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 395 | 394 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 396 | 390 395 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℝ ) | 
						
							| 397 | 78 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - π  ∈  ℝ ) | 
						
							| 398 | 71 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ∈  ℝ ) | 
						
							| 399 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 400 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  ℝ ) | 
						
							| 401 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 402 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑉  ∈  ( ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  +  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  +  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑁 ) ) | 
						
							| 403 | 134 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 404 | 232 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) )  =  ( 𝑄 ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { 𝑓  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑓 )  ≤  ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐶 ) ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { 𝑓  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑓 )  ≤  ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( 𝐹 ‘ ( ( 𝑑  ∈  ( - π (,] π )  ↦  if ( 𝑑  =  π ,  - π ,  𝑑 ) ) ‘ ( ( 𝑐  ∈  ℝ  ↦  ( 𝑐  +  ( ( ⌊ ‘ ( ( π  −  𝑐 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑉 ‘ 𝑖 ) ) ) | 
						
							| 405 | 242 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( ( ( 𝑦  ∈  ℝ  ↦  sup ( { ℎ  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ ℎ )  ≤  ( ( 𝑔  ∈  ( - π (,] π )  ↦  if ( 𝑔  =  π ,  - π ,  𝑔 ) ) ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) )  +  1 ) ) ,  ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝑈 ) ‘ ( ( 𝑦  ∈  ℝ  ↦  sup ( { ℎ  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ ℎ )  ≤  ( ( 𝑔  ∈  ( - π (,] π )  ↦  if ( 𝑔  =  π ,  - π ,  𝑔 ) ) ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑦 ) ) } ,  ℝ ,   <  ) ) ‘ ( 𝑉 ‘ 𝑖 ) ) ) ,  ( 𝐹 ‘ ( ( 𝑒  ∈  ℝ  ↦  ( 𝑒  +  ( ( ⌊ ‘ ( ( π  −  𝑒 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑉 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 406 | 2 | dirkercncf | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 407 | 406 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 408 |  | eqid | ⊢ ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  =  ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 409 | 397 398 399 400 66 401 402 403 404 405 320 3 407 408 | fourierdlem84 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 410 | 381 383 396 409 | iblss | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π (,) 0 )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 411 | 374 410 | itgcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  ∈  ℂ ) | 
						
							| 412 | 361 362 363 411 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  =  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 413 | 412 411 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 414 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  =  ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 415 | 340 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  =  𝑛 )  →  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 416 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 (,) π ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 417 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 (,) π ) )  →  𝑋  ∈  ℝ ) | 
						
							| 418 |  | elioore | ⊢ ( 𝑠  ∈  ( 0 (,) π )  →  𝑠  ∈  ℝ ) | 
						
							| 419 | 418 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 (,) π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 420 | 417 419 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 421 | 416 420 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 422 | 421 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℝ ) | 
						
							| 423 | 418 371 | sylan2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 424 | 423 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 425 | 422 424 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℝ ) | 
						
							| 426 |  | ioossicc | ⊢ ( 0 (,) π )  ⊆  ( 0 [,] π ) | 
						
							| 427 | 78 79 76 | ltleii | ⊢ - π  ≤  0 | 
						
							| 428 | 71 | leidi | ⊢ π  ≤  π | 
						
							| 429 |  | iccss | ⊢ ( ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  ∧  ( - π  ≤  0  ∧  π  ≤  π ) )  →  ( 0 [,] π )  ⊆  ( - π [,] π ) ) | 
						
							| 430 | 78 71 427 428 429 | mp4an | ⊢ ( 0 [,] π )  ⊆  ( - π [,] π ) | 
						
							| 431 | 426 430 | sstri | ⊢ ( 0 (,) π )  ⊆  ( - π [,] π ) | 
						
							| 432 | 431 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0 (,) π )  ⊆  ( - π [,] π ) ) | 
						
							| 433 |  | ioombl | ⊢ ( 0 (,) π )  ∈  dom  vol | 
						
							| 434 | 433 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0 (,) π )  ∈  dom  vol ) | 
						
							| 435 | 432 434 396 409 | iblss | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( 0 (,) π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 436 | 425 435 | itgcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  ∈  ℂ ) | 
						
							| 437 | 414 415 363 436 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  =  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 438 | 437 436 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 439 |  | eleq1w | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ∈  ℕ  ↔  𝑛  ∈  ℕ ) ) | 
						
							| 440 | 439 | anbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑛  ∈  ℕ ) ) ) | 
						
							| 441 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑍 ‘ 𝑚 )  =  ( 𝑍 ‘ 𝑛 ) ) | 
						
							| 442 | 276 340 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 443 | 441 442 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑍 ‘ 𝑚 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 )  ↔  ( 𝑍 ‘ 𝑛 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) ) | 
						
							| 444 | 440 443 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) )  ↔  ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑍 ‘ 𝑛 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) ) ) | 
						
							| 445 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ·  𝑥 )  =  ( 𝑚  ·  𝑥 ) ) | 
						
							| 446 | 445 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( cos ‘ ( 𝑛  ·  𝑥 ) )  =  ( cos ‘ ( 𝑚  ·  𝑥 ) ) ) | 
						
							| 447 | 446 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) ) ) | 
						
							| 448 | 447 | adantr | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑥  ∈  ( - π (,) π ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) ) ) | 
						
							| 449 | 448 | itgeq2dv | ⊢ ( 𝑛  =  𝑚  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥 ) | 
						
							| 450 | 449 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π )  =  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 451 | 450 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 452 | 20 451 | eqtri | ⊢ 𝐴  =  ( 𝑚  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 453 | 445 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( sin ‘ ( 𝑛  ·  𝑥 ) )  =  ( sin ‘ ( 𝑚  ·  𝑥 ) ) ) | 
						
							| 454 | 453 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) ) ) | 
						
							| 455 | 454 | adantr | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑥  ∈  ( - π (,) π ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) ) ) | 
						
							| 456 | 455 | itgeq2dv | ⊢ ( 𝑛  =  𝑚  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥 ) | 
						
							| 457 | 456 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π )  =  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 458 | 457 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑛  ·  𝑥 ) ) )  d 𝑥  /  π ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 459 | 21 458 | eqtri | ⊢ 𝐵  =  ( 𝑚  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑚  ·  𝑥 ) ) )  d 𝑥  /  π ) ) | 
						
							| 460 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 461 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ·  𝑋 )  =  ( 𝑘  ·  𝑋 ) ) | 
						
							| 462 | 461 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( cos ‘ ( 𝑛  ·  𝑋 ) )  =  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 463 | 460 462 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 464 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐵 ‘ 𝑛 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 465 | 461 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( sin ‘ ( 𝑛  ·  𝑋 ) )  =  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 466 | 464 465 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 467 | 463 466 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 468 | 467 | cbvsumv | ⊢ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 469 | 468 | oveq2i | ⊢ ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 470 | 469 | mpteq2i | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ) | 
						
							| 471 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑛 ) ) | 
						
							| 472 | 471 | sumeq1d | ⊢ ( 𝑚  =  𝑛  →  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 473 | 472 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ) | 
						
							| 474 | 473 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ) | 
						
							| 475 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑚 ) ) | 
						
							| 476 |  | oveq1 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  ·  𝑋 )  =  ( 𝑚  ·  𝑋 ) ) | 
						
							| 477 | 476 | fveq2d | ⊢ ( 𝑘  =  𝑚  →  ( cos ‘ ( 𝑘  ·  𝑋 ) )  =  ( cos ‘ ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 478 | 475 477 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) ) ) | 
						
							| 479 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑚 ) ) | 
						
							| 480 | 476 | fveq2d | ⊢ ( 𝑘  =  𝑚  →  ( sin ‘ ( 𝑘  ·  𝑋 ) )  =  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 481 | 479 480 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) | 
						
							| 482 | 478 481 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) ) | 
						
							| 483 | 482 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑚  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) | 
						
							| 484 | 483 | oveq2i | ⊢ ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑚  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) ) | 
						
							| 485 | 484 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑚  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) ) ) | 
						
							| 486 | 474 485 | eqtri | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑚  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) ) ) | 
						
							| 487 | 22 470 486 | 3eqtri | ⊢ 𝑍  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑚  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑚 )  ·  ( cos ‘ ( 𝑚  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑚 )  ·  ( sin ‘ ( 𝑚  ·  𝑋 ) ) ) ) ) ) | 
						
							| 488 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑋  +  𝑦 )  =  ( 𝑋  +  𝑥 ) ) | 
						
							| 489 | 488 | fveq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) | 
						
							| 490 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 491 | 489 490 | oveq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 492 | 491 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 493 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑛 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 494 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 495 | 494 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 496 | 495 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 497 | 452 459 487 2 3 4 5 8 1 11 492 12 13 14 10 493 496 | fourierdlem111 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 498 | 444 497 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑍 ‘ 𝑛 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 499 | 412 437 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  +  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 ) )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 500 | 498 499 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑍 ‘ 𝑛 )  =  ( ( ( 𝑚  ∈  ℕ  ↦  ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 )  +  ( ( 𝑚  ∈  ℕ  ↦  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑚 ) ‘ 𝑠 ) )  d 𝑠 ) ‘ 𝑛 ) ) ) | 
						
							| 501 | 41 49 52 65 39 40 334 338 360 413 438 500 | climaddf | ⊢ ( 𝜑  →  𝑍  ⇝  ( ( 𝐿  /  2 )  +  ( 𝑅  /  2 ) ) ) | 
						
							| 502 |  | limccl | ⊢ ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ⊆  ℂ | 
						
							| 503 | 502 18 | sselid | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 504 |  | limccl | ⊢ ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ⊆  ℂ | 
						
							| 505 | 504 19 | sselid | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 506 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 507 |  | 2pos | ⊢ 0  <  2 | 
						
							| 508 | 507 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 509 | 508 | gt0ne0d | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 510 | 503 505 506 509 | divdird | ⊢ ( 𝜑  →  ( ( 𝐿  +  𝑅 )  /  2 )  =  ( ( 𝐿  /  2 )  +  ( 𝑅  /  2 ) ) ) | 
						
							| 511 | 501 510 | breqtrrd | ⊢ ( 𝜑  →  𝑍  ⇝  ( ( 𝐿  +  𝑅 )  /  2 ) ) | 
						
							| 512 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 513 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  ∈  ℕ0 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 514 |  | eqid | ⊢ ( - π (,) π )  =  ( - π (,) π ) | 
						
							| 515 |  | ioossre | ⊢ ( - π (,) π )  ⊆  ℝ | 
						
							| 516 | 515 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ⊆  ℝ ) | 
						
							| 517 | 1 516 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π (,) π ) )  =  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 518 |  | ioossicc | ⊢ ( - π (,) π )  ⊆  ( - π [,] π ) | 
						
							| 519 | 518 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ⊆  ( - π [,] π ) ) | 
						
							| 520 |  | ioombl | ⊢ ( - π (,) π )  ∈  dom  vol | 
						
							| 521 | 520 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ∈  dom  vol ) | 
						
							| 522 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 523 | 386 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝑥  ∈  ℝ ) | 
						
							| 524 | 522 523 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 525 | 1 386 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) )  =  ( 𝑥  ∈  ( - π [,] π )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 526 | 187 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 527 | 1 526 | fssd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 528 | 527 386 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 529 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 530 | 78 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 531 | 530 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  - π  ∈  ℝ* ) | 
						
							| 532 | 71 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 533 | 532 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  π  ∈  ℝ* ) | 
						
							| 534 | 3 4 5 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 535 | 534 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 536 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 537 | 531 533 535 536 | fourierdlem8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 538 | 529 537 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 539 | 538 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 540 | 539 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 541 | 539 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 542 | 541 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 543 | 13 542 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐶  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 544 | 541 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 545 | 14 544 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑈  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 546 | 3 4 5 528 540 543 545 | fourierdlem69 | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) )  ∈  𝐿1 ) | 
						
							| 547 | 525 546 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( - π [,] π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 548 | 519 521 524 547 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 549 | 517 548 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 550 | 549 | adantr | ⊢ ( ( 𝜑  ∧  0  ∈  ℕ0 )  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 551 |  | simpr | ⊢ ( ( 𝜑  ∧  0  ∈  ℕ0 )  →  0  ∈  ℕ0 ) | 
						
							| 552 | 513 514 550 20 551 | fourierdlem16 | ⊢ ( ( 𝜑  ∧  0  ∈  ℕ0 )  →  ( ( ( 𝐴 ‘ 0 )  ∈  ℝ  ∧  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  ∧  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 0  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ ) ) | 
						
							| 553 | 552 | simplld | ⊢ ( ( 𝜑  ∧  0  ∈  ℕ0 )  →  ( 𝐴 ‘ 0 )  ∈  ℝ ) | 
						
							| 554 | 512 553 | mpan2 | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℝ ) | 
						
							| 555 | 554 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  /  2 )  ∈  ℝ ) | 
						
							| 556 | 555 | recnd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  /  2 )  ∈  ℂ ) | 
						
							| 557 | 335 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  ∈  V | 
						
							| 558 | 557 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  ∈  V ) | 
						
							| 559 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 560 | 555 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴 ‘ 0 )  /  2 )  ∈  ℝ ) | 
						
							| 561 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 1 ... 𝑚 )  ∈  Fin ) | 
						
							| 562 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 563 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑚 )  →  𝑛  ∈  ℕ ) | 
						
							| 564 | 563 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑚 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 565 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝜑 ) | 
						
							| 566 | 363 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 567 |  | eleq1w | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  ∈  ℕ0  ↔  𝑛  ∈  ℕ0 ) ) | 
						
							| 568 | 567 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ↔  ( 𝜑  ∧  𝑛  ∈  ℕ0 ) ) ) | 
						
							| 569 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 570 | 569 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐴 ‘ 𝑛 )  ∈  ℝ ) ) | 
						
							| 571 | 568 570 | imbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ ) ) ) | 
						
							| 572 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 573 | 549 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 574 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 575 | 572 514 573 20 574 | fourierdlem16 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 )  ∧  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( cos ‘ ( 𝑘  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ ) ) | 
						
							| 576 | 575 | simplld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 577 | 571 576 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 578 | 565 566 577 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 579 | 363 | nnred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ ) | 
						
							| 580 | 579 400 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ·  𝑋 )  ∈  ℝ ) | 
						
							| 581 | 580 | recoscld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( cos ‘ ( 𝑛  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 582 | 578 581 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 583 |  | eleq1w | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  ∈  ℕ  ↔  𝑛  ∈  ℕ ) ) | 
						
							| 584 | 583 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑛  ∈  ℕ ) ) ) | 
						
							| 585 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑛 ) ) | 
						
							| 586 | 585 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐵 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐵 ‘ 𝑛 )  ∈  ℝ ) ) | 
						
							| 587 | 584 586 | imbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ‘ 𝑛 )  ∈  ℝ ) ) ) | 
						
							| 588 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 589 | 549 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 590 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 591 | 588 514 589 21 590 | fourierdlem21 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐵 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝑥  ∈  ( - π (,) π )  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑘  ·  𝑥 ) ) ) )  ∈  𝐿1 )  ∧  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 )  ·  ( sin ‘ ( 𝑘  ·  𝑥 ) ) )  d 𝑥  ∈  ℝ ) ) | 
						
							| 592 | 591 | simplld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 593 | 587 592 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 594 | 580 | resincld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( sin ‘ ( 𝑛  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 595 | 593 594 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 596 | 582 595 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 597 | 562 564 596 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑚 ) )  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 598 | 561 597 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 599 | 560 598 | readdcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  ∈  ℝ ) | 
						
							| 600 | 22 | fvmpt2 | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  ∈  ℝ )  →  ( 𝑍 ‘ 𝑚 )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 601 | 559 599 600 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 602 | 601 599 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 603 | 602 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 604 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ) | 
						
							| 605 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑚 ) ) | 
						
							| 606 | 605 | sumeq1d | ⊢ ( 𝑛  =  𝑚  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 607 | 606 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  =  𝑚 )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 608 |  | sumex | ⊢ Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  V | 
						
							| 609 | 608 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  V ) | 
						
							| 610 | 604 607 559 609 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 611 | 560 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴 ‘ 0 )  /  2 )  ∈  ℂ ) | 
						
							| 612 | 598 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  ∈  ℂ ) | 
						
							| 613 | 611 612 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 614 | 613 468 | eqtr2di | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 615 |  | ovex | ⊢ ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  ∈  V | 
						
							| 616 | 22 | fvmpt2 | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  ∈  V )  →  ( 𝑍 ‘ 𝑚 )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 617 | 559 615 616 | sylancl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑍 ‘ 𝑚 )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 618 | 617 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( 𝑍 ‘ 𝑚 ) ) | 
						
							| 619 | 618 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  =  ( ( 𝑍 ‘ 𝑚 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 620 | 610 614 619 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ‘ 𝑚 )  =  ( ( 𝑍 ‘ 𝑚 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 621 | 39 40 511 556 558 603 620 | climsubc1 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 622 |  | seqex | ⊢ seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) )  ∈  V | 
						
							| 623 | 622 | a1i | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) )  ∈  V ) | 
						
							| 624 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ) | 
						
							| 625 |  | oveq2 | ⊢ ( 𝑛  =  𝑙  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑙 ) ) | 
						
							| 626 | 625 | sumeq1d | ⊢ ( 𝑛  =  𝑙  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 627 | 626 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  ℕ )  ∧  𝑛  =  𝑙 )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 628 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  𝑙  ∈  ℕ ) | 
						
							| 629 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  ( 1 ... 𝑙 )  ∈  Fin ) | 
						
							| 630 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑙 )  →  𝑘  ∈  ℕ ) | 
						
							| 631 | 630 | nnnn0d | ⊢ ( 𝑘  ∈  ( 1 ... 𝑙 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 632 | 631 576 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 633 | 630 | nnred | ⊢ ( 𝑘  ∈  ( 1 ... 𝑙 )  →  𝑘  ∈  ℝ ) | 
						
							| 634 | 633 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 635 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 636 | 634 635 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( 𝑘  ·  𝑋 )  ∈  ℝ ) | 
						
							| 637 | 636 | recoscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( cos ‘ ( 𝑘  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 638 | 632 637 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 639 | 630 592 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 640 | 636 | resincld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( sin ‘ ( 𝑘  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 641 | 639 640 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 642 | 638 641 | readdcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 643 | 642 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑙 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 644 | 629 643 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 645 | 624 627 628 644 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ‘ 𝑙 )  =  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 646 |  | eleq1w | ⊢ ( 𝑛  =  𝑙  →  ( 𝑛  ∈  ℕ  ↔  𝑙  ∈  ℕ ) ) | 
						
							| 647 | 646 | anbi2d | ⊢ ( 𝑛  =  𝑙  →  ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑙  ∈  ℕ ) ) ) | 
						
							| 648 |  | fveq2 | ⊢ ( 𝑛  =  𝑙  →  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑛 )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) | 
						
							| 649 | 626 648 | eqeq12d | ⊢ ( 𝑛  =  𝑙  →  ( Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑛 )  ↔  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) ) | 
						
							| 650 | 647 649 | imbi12d | ⊢ ( 𝑛  =  𝑙  →  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑛 ) )  ↔  ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) ) ) | 
						
							| 651 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) | 
						
							| 652 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 653 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ·  𝑋 )  =  ( 𝑘  ·  𝑋 ) ) | 
						
							| 654 | 653 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( cos ‘ ( 𝑗  ·  𝑋 ) )  =  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 655 | 652 654 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 656 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 657 | 653 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( sin ‘ ( 𝑗  ·  𝑋 ) )  =  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) | 
						
							| 658 | 656 657 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) | 
						
							| 659 | 655 658 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 660 | 659 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  ∧  𝑗  =  𝑘 )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 661 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℕ ) | 
						
							| 662 | 661 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 663 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝜑 ) | 
						
							| 664 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 665 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 666 | 665 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 667 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  ℝ ) | 
						
							| 668 | 666 667 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ·  𝑋 )  ∈  ℝ ) | 
						
							| 669 | 668 | recoscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( cos ‘ ( 𝑘  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 670 | 576 669 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 671 | 664 670 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 672 | 664 668 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  𝑋 )  ∈  ℝ ) | 
						
							| 673 | 672 | resincld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( sin ‘ ( 𝑘  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 674 | 592 673 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 675 | 671 674 | readdcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 676 | 663 662 675 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 677 | 651 660 662 676 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) | 
						
							| 678 | 363 39 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 679 | 676 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  ∈  ℂ ) | 
						
							| 680 | 677 678 679 | fsumser | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 681 | 650 680 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  Σ 𝑘  ∈  ( 1 ... 𝑙 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) | 
						
							| 682 | 645 681 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) ) ‘ 𝑙 )  =  ( seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) ‘ 𝑙 ) ) | 
						
							| 683 | 39 558 623 40 682 | climeq | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  Σ 𝑘  ∈  ( 1 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( cos ‘ ( 𝑘  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( sin ‘ ( 𝑘  ·  𝑋 ) ) ) ) )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  ↔  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) ) | 
						
							| 684 | 621 683 | mpbid | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 685 | 38 684 | eqbrtrd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝑆 )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 686 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ) | 
						
							| 687 |  | fveq2 | ⊢ ( 𝑗  =  𝑛  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 688 |  | oveq1 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑗  ·  𝑋 )  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 689 | 688 | fveq2d | ⊢ ( 𝑗  =  𝑛  →  ( cos ‘ ( 𝑗  ·  𝑋 ) )  =  ( cos ‘ ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 690 | 687 689 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 691 |  | fveq2 | ⊢ ( 𝑗  =  𝑛  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑛 ) ) | 
						
							| 692 | 688 | fveq2d | ⊢ ( 𝑗  =  𝑛  →  ( sin ‘ ( 𝑗  ·  𝑋 ) )  =  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 693 | 691 692 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) )  =  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 694 | 690 693 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 695 | 694 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑗  =  𝑛 )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 696 | 686 695 363 596 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑗  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( cos ‘ ( 𝑗  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑗 )  ·  ( sin ‘ ( 𝑗  ·  𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) | 
						
							| 697 | 596 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  ∈  ℂ ) | 
						
							| 698 | 39 40 696 697 684 | isumclim | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) )  =  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) | 
						
							| 699 | 698 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) ) ) | 
						
							| 700 | 503 505 | addcld | ⊢ ( 𝜑  →  ( 𝐿  +  𝑅 )  ∈  ℂ ) | 
						
							| 701 | 700 | halfcld | ⊢ ( 𝜑  →  ( ( 𝐿  +  𝑅 )  /  2 )  ∈  ℂ ) | 
						
							| 702 | 556 701 | pncan3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) ) )  =  ( ( 𝐿  +  𝑅 )  /  2 ) ) | 
						
							| 703 | 699 702 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( 𝐿  +  𝑅 )  /  2 ) ) | 
						
							| 704 | 685 703 | jca | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝑆 )  ⇝  ( ( ( 𝐿  +  𝑅 )  /  2 )  −  ( ( 𝐴 ‘ 0 )  /  2 ) )  ∧  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ℕ ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) )  =  ( ( 𝐿  +  𝑅 )  /  2 ) ) ) |