| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem111.a | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( cos ‘ ( 𝑛  ·  𝑡 ) ) )  d 𝑡  /  π ) ) | 
						
							| 2 |  | fourierdlem111.b | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( sin ‘ ( 𝑛  ·  𝑡 ) ) )  d 𝑡  /  π ) ) | 
						
							| 3 |  | fourierdlem111.s | ⊢ 𝑆  =  ( 𝑚  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 0 )  /  2 )  +  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( ( 𝐴 ‘ 𝑛 )  ·  ( cos ‘ ( 𝑛  ·  𝑋 ) ) )  +  ( ( 𝐵 ‘ 𝑛 )  ·  ( sin ‘ ( 𝑛  ·  𝑋 ) ) ) ) ) ) | 
						
							| 4 |  | fourierdlem111.d | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 5 |  | fourierdlem111.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem111.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem111.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem111.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 9 |  | fourierdlem111.6 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 10 |  | fourierdlem111.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 11 |  | fourierdlem111.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 12 |  | fourierdlem111.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 13 |  | fourierdlem111.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 14 |  | fourierdlem111.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 15 |  | fourierdlem111.t | ⊢ 𝑇  =  ( 2  ·  π ) | 
						
							| 16 |  | fourierdlem111.o | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 17 |  | fourierdlem111.14 | ⊢ 𝑊  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 18 |  | eleq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  ∈  ℕ  ↔  𝑛  ∈  ℕ ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ↔  ( 𝜑  ∧  𝑛  ∈  ℕ ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑆 ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐷 ‘ 𝑘 )  =  ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 22 | 21 | fveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑘  =  𝑛  ∧  𝑡  ∈  ( - π (,) π ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 25 | 24 | itgeq2dv | ⊢ ( 𝑘  =  𝑛  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) | 
						
							| 26 | 20 25 | eqeq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑆 ‘ 𝑘 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  ↔  ( 𝑆 ‘ 𝑛 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) ) | 
						
							| 27 | 19 26 | imbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 )  ↔  ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑆 ‘ 𝑛 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) ) ) | 
						
							| 28 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 29 |  | eqid | ⊢ ( - π (,) π )  =  ( - π (,) π ) | 
						
							| 30 |  | ioossre | ⊢ ( - π (,) π )  ⊆  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ⊆  ℝ ) | 
						
							| 32 | 9 31 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π (,) π ) )  =  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 |  | ioossicc | ⊢ ( - π (,) π )  ⊆  ( - π [,] π ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ⊆  ( - π [,] π ) ) | 
						
							| 35 |  | ioombl | ⊢ ( - π (,) π )  ∈  dom  vol | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( - π (,) π )  ∈  dom  vol ) | 
						
							| 37 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 38 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 39 | 38 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 40 | 39 38 | elicc2i | ⊢ ( 𝑡  ∈  ( - π [,] π )  ↔  ( 𝑡  ∈  ℝ  ∧  - π  ≤  𝑡  ∧  𝑡  ≤  π ) ) | 
						
							| 41 | 40 | simp1bi | ⊢ ( 𝑡  ∈  ( - π [,] π )  →  𝑡  ∈  ℝ ) | 
						
							| 42 | 41 | ssriv | ⊢ ( - π [,] π )  ⊆  ℝ | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  ( - π [,] π )  ⊆  ℝ ) | 
						
							| 44 | 43 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝑥  ∈  ℝ ) | 
						
							| 45 | 37 44 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 46 | 9 43 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) )  =  ( 𝑥  ∈  ( - π [,] π )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 47 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 49 | 9 48 | fssd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 50 | 49 43 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 51 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 52 | 39 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  - π  ∈  ℝ* ) | 
						
							| 54 | 38 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  π  ∈  ℝ* ) | 
						
							| 56 | 5 6 7 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 59 | 53 55 57 58 | fourierdlem8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 60 | 51 59 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 61 | 60 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 62 | 61 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 63 | 61 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 64 | 13 63 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 65 | 61 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 66 | 14 65 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 67 | 5 6 7 50 62 64 66 | fourierdlem69 | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π [,] π ) )  ∈  𝐿1 ) | 
						
							| 68 | 46 67 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( - π [,] π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 69 | 34 36 45 68 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( - π (,) π )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 70 | 32 69 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹  ↾  ( - π (,) π ) )  ∈  𝐿1 ) | 
						
							| 72 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑋  ∈  ℝ ) | 
						
							| 73 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 74 | 28 29 71 1 2 72 3 4 73 | fourierdlem83 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑘 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) | 
						
							| 75 | 27 74 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑆 ‘ 𝑛 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) | 
						
							| 76 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - π  ∈  ℝ ) | 
						
							| 77 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ∈  ℝ ) | 
						
							| 78 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 79 | 41 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑡  ∈  ℝ ) | 
						
							| 80 | 78 79 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 81 | 80 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 82 | 4 | dirkerf | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 83 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 84 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑋  ∈  ℝ ) | 
						
							| 85 | 79 84 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 86 | 85 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 87 | 83 86 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 88 | 87 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℂ ) | 
						
							| 89 | 81 88 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ℂ ) | 
						
							| 90 | 76 77 89 | itgioo | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) | 
						
							| 91 |  | fvres | ⊢ ( 𝑡  ∈  ( - π [,] π )  →  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 92 | 91 | eqcomd | ⊢ ( 𝑡  ∈  ( - π [,] π )  →  ( 𝐹 ‘ 𝑡 )  =  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( 𝑡  ∈  ( - π [,] π )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 95 | 94 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( - π [,] π ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡 ) | 
						
							| 96 |  | simpl | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  𝑛  =  𝑚 ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑚 ) ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  𝑚 )  +  1 ) ) | 
						
							| 99 | 98 | oveq1d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) )  =  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ) | 
						
							| 100 | 96 | oveq1d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( 𝑛  +  ( 1  /  2 ) )  =  ( 𝑚  +  ( 1  /  2 ) ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 )  =  ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  =  ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) | 
						
							| 104 | 99 103 | ifeq12d | ⊢ ( ( 𝑛  =  𝑚  ∧  𝑦  ∈  ℝ )  →  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) )  =  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) | 
						
							| 105 | 104 | mpteq2dva | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 106 | 105 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 107 | 4 106 | eqtri | ⊢ 𝐷  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑚 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑚  +  ( 1  /  2 ) )  ·  𝑦 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑦  /  2 ) ) ) ) ) ) ) | 
						
							| 108 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑠 )  =  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 ) ) | 
						
							| 109 |  | oveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  −  𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 110 | 109 | fveq2d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 111 | 108 110 | oveq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑠 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  −  𝑋 ) ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 112 | 111 | cbvmptv | ⊢ ( 𝑠  ∈  ( - π [,] π )  ↦  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑠 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  −  𝑋 ) ) ) )  =  ( 𝑡  ∈  ( - π [,] π )  ↦  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 113 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 114 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 115 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 116 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  ℝ ) | 
						
							| 117 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹  ↾  ( - π [,] π ) ) : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 118 | 62 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 119 | 64 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 120 | 66 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( ( 𝐹  ↾  ( - π [,] π ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 121 | 107 5 112 113 114 115 116 117 118 119 120 | fourierdlem101 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π [,] π ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦 ) | 
						
							| 122 |  | oveq2 | ⊢ ( 𝑠  =  𝑦  →  ( 𝑋  +  𝑠 )  =  ( 𝑋  +  𝑦 ) ) | 
						
							| 123 | 122 | fveq2d | ⊢ ( 𝑠  =  𝑦  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 124 |  | fveq2 | ⊢ ( 𝑠  =  𝑦  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) | 
						
							| 125 | 123 124 | oveq12d | ⊢ ( 𝑠  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 126 | 125 | cbvitgv | ⊢ ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦 | 
						
							| 127 | 126 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦 ) | 
						
							| 128 | 39 | a1i | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 129 | 128 8 | resubcld | ⊢ ( 𝜑  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 131 | 38 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 132 | 131 8 | resubcld | ⊢ ( 𝜑  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 134 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 135 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 136 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ) | 
						
							| 137 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 138 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 139 |  | elicc2 | ⊢ ( ( ( - π  −  𝑋 )  ∈  ℝ  ∧  ( π  −  𝑋 )  ∈  ℝ )  →  ( 𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑦  ∧  𝑦  ≤  ( π  −  𝑋 ) ) ) ) | 
						
							| 140 | 137 138 139 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑦  ∧  𝑦  ≤  ( π  −  𝑋 ) ) ) ) | 
						
							| 141 | 136 140 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑦  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑦  ∧  𝑦  ≤  ( π  −  𝑋 ) ) ) | 
						
							| 142 | 141 | simp1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 143 | 135 142 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑦 )  ∈  ℝ ) | 
						
							| 144 | 134 143 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ∈  ℂ ) | 
						
							| 145 | 144 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ∈  ℂ ) | 
						
							| 146 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 147 | 142 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 148 | 146 147 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 149 | 148 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 150 | 145 149 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 151 | 130 133 150 | itgioo | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦 ) | 
						
							| 152 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  ∈  ℝ ) | 
						
							| 153 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  π  ∈  ℝ ) | 
						
							| 154 | 8 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 155 | 131 | recnd | ⊢ ( 𝜑  →  π  ∈  ℂ ) | 
						
							| 156 | 155 | negcld | ⊢ ( 𝜑  →  - π  ∈  ℂ ) | 
						
							| 157 | 154 156 | pncan3d | ⊢ ( 𝜑  →  ( 𝑋  +  ( - π  −  𝑋 ) )  =  - π ) | 
						
							| 158 | 157 | eqcomd | ⊢ ( 𝜑  →  - π  =  ( 𝑋  +  ( - π  −  𝑋 ) ) ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  =  ( 𝑋  +  ( - π  −  𝑋 ) ) ) | 
						
							| 160 | 141 | simp2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( - π  −  𝑋 )  ≤  𝑦 ) | 
						
							| 161 | 137 142 135 160 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  ( - π  −  𝑋 ) )  ≤  ( 𝑋  +  𝑦 ) ) | 
						
							| 162 | 159 161 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  ≤  ( 𝑋  +  𝑦 ) ) | 
						
							| 163 | 141 | simp3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑦  ≤  ( π  −  𝑋 ) ) | 
						
							| 164 | 142 138 135 163 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑦 )  ≤  ( 𝑋  +  ( π  −  𝑋 ) ) ) | 
						
							| 165 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑋  ∈  ℂ ) | 
						
							| 166 | 155 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  π  ∈  ℂ ) | 
						
							| 167 | 165 166 | pncan3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  ( π  −  𝑋 ) )  =  π ) | 
						
							| 168 | 164 167 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑦 )  ≤  π ) | 
						
							| 169 | 152 153 143 162 168 | eliccd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑦 )  ∈  ( - π [,] π ) ) | 
						
							| 170 |  | fvres | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ( - π [,] π )  →  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 171 | 169 170 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 172 | 171 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  =  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 173 | 172 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  =  ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 174 | 173 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  =  ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) ) ) | 
						
							| 175 | 174 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦 ) | 
						
							| 176 | 127 151 175 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑦 ) )  d 𝑦  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 177 | 121 176 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π [,] π ) ( ( ( 𝐹  ↾  ( - π [,] π ) ) ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 178 | 90 95 177 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 179 |  | elioore | ⊢ ( 𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) )  →  𝑠  ∈  ℝ ) | 
						
							| 180 | 179 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 181 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 182 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 183 | 179 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 184 | 182 183 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 185 | 181 184 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 186 | 185 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 187 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 188 | 187 180 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 189 | 188 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 190 | 186 189 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 191 |  | oveq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  𝑠 ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( 𝑥  =  𝑠  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 193 |  | fveq2 | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 194 | 192 193 | oveq12d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 195 | 194 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 196 | 11 195 | eqtri | ⊢ 𝐺  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 197 | 196 | fvmpt2 | ⊢ ( ( 𝑠  ∈  ℝ  ∧  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 198 | 180 190 197 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 199 | 198 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 200 | 199 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑠 )  d 𝑠 ) | 
						
							| 201 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 202 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑋  ∈  ℝ ) | 
						
							| 203 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 204 | 202 203 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑋  +  𝑥 )  ∈  ℝ ) | 
						
							| 205 | 201 204 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ∈  ℂ ) | 
						
							| 206 | 205 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ∈  ℂ ) | 
						
							| 207 | 82 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 208 | 207 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 209 | 208 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 210 | 206 209 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 211 | 210 11 | fmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 212 | 211 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 213 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 214 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 215 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ) | 
						
							| 216 |  | eliccre | ⊢ ( ( ( - π  −  𝑋 )  ∈  ℝ  ∧  ( π  −  𝑋 )  ∈  ℝ  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 217 | 213 214 215 216 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 218 | 217 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 219 | 212 218 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐺 ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 220 | 130 133 219 | itgioo | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑠 )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑠 )  d 𝑠 ) | 
						
							| 221 |  | fveq2 | ⊢ ( 𝑠  =  𝑥  →  ( 𝐺 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 222 | 221 | cbvitgv | ⊢ ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑠 )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥 | 
						
							| 223 | 220 222 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑠 )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 224 | 200 223 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 225 |  | eqid | ⊢ ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) )  =  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) | 
						
							| 226 | 116 | renegcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - 𝑋  ∈  ℝ ) | 
						
							| 227 | 5 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 228 | 6 227 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 229 | 7 228 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 230 | 229 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 231 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 232 | 230 231 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 233 | 232 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 234 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 235 | 233 234 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 236 | 235 17 | fmptd | ⊢ ( 𝜑  →  𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 237 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 238 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 239 | 237 238 | pm3.2i | ⊢ ( ℝ  ∈  V  ∧  ( 0 ... 𝑀 )  ∈  V ) | 
						
							| 240 |  | elmapg | ⊢ ( ( ℝ  ∈  V  ∧  ( 0 ... 𝑀 )  ∈  V )  →  ( 𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 241 | 239 240 | mp1i | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑊 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 242 | 236 241 | mpbird | ⊢ ( 𝜑  →  𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 243 | 17 | a1i | ⊢ ( 𝜑  →  𝑊  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ) | 
						
							| 244 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 245 | 229 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 246 | 245 | simpld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π ) ) | 
						
							| 247 | 246 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  - π ) | 
						
							| 248 | 244 247 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( 𝑄 ‘ 𝑖 )  =  - π ) | 
						
							| 249 | 248 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  =  ( - π  −  𝑋 ) ) | 
						
							| 250 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 251 | 6 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 252 |  | 0red | ⊢ ( 𝑀  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 253 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 254 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 255 | 252 253 254 | ltled | ⊢ ( 𝑀  ∈  ℕ  →  0  ≤  𝑀 ) | 
						
							| 256 | 6 255 | syl | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 257 |  | eluz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  ≤  𝑀 ) ) | 
						
							| 258 | 250 251 256 257 | syl3anbrc | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 259 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 260 | 258 259 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 261 | 243 249 260 129 | fvmptd | ⊢ ( 𝜑  →  ( 𝑊 ‘ 0 )  =  ( - π  −  𝑋 ) ) | 
						
							| 262 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 263 | 246 | simprd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  π ) | 
						
							| 264 | 262 263 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑖  =  𝑀 )  →  ( 𝑄 ‘ 𝑖 )  =  π ) | 
						
							| 265 | 264 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  =  𝑀 )  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  =  ( π  −  𝑋 ) ) | 
						
							| 266 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 267 | 258 266 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 268 | 243 265 267 132 | fvmptd | ⊢ ( 𝜑  →  ( 𝑊 ‘ 𝑀 )  =  ( π  −  𝑋 ) ) | 
						
							| 269 | 261 268 | jca | ⊢ ( 𝜑  →  ( ( 𝑊 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑊 ‘ 𝑀 )  =  ( π  −  𝑋 ) ) ) | 
						
							| 270 | 232 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 271 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 272 | 271 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 273 | 270 272 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 274 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 275 | 274 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 276 | 270 275 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 277 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 278 | 245 | simprd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 279 | 278 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 280 | 273 276 277 279 | ltsub1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 281 | 272 235 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ ) | 
						
							| 282 | 17 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  ∈  ℝ )  →  ( 𝑊 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 283 | 272 281 282 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 284 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 285 | 284 | oveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  =  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 286 | 285 | cbvmptv | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 287 | 17 286 | eqtri | ⊢ 𝑊  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) ) | 
						
							| 288 | 287 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑊  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) ) ) | 
						
							| 289 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 290 | 289 | oveq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑗  =  ( 𝑖  +  1 ) )  →  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 292 | 276 277 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 )  ∈  ℝ ) | 
						
							| 293 | 288 291 275 292 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 294 | 280 283 293 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 295 | 294 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 296 | 242 269 295 | jca32 | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑊 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑊 ‘ 𝑀 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 297 | 16 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑊  ∈  ( 𝑂 ‘ 𝑀 )  ↔  ( 𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑊 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑊 ‘ 𝑀 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 298 | 6 297 | syl | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( 𝑂 ‘ 𝑀 )  ↔  ( 𝑊  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑊 ‘ 0 )  =  ( - π  −  𝑋 )  ∧  ( 𝑊 ‘ 𝑀 )  =  ( π  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 299 | 296 298 | mpbird | ⊢ ( 𝜑  →  𝑊  ∈  ( 𝑂 ‘ 𝑀 ) ) | 
						
							| 300 | 299 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑊  ∈  ( 𝑂 ‘ 𝑀 ) ) | 
						
							| 301 | 155 156 154 | nnncan2d | ⊢ ( 𝜑  →  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) )  =  ( π  −  - π ) ) | 
						
							| 302 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 303 | 302 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 304 | 302 302 | subnegi | ⊢ ( π  −  - π )  =  ( π  +  π ) | 
						
							| 305 | 303 15 304 | 3eqtr4i | ⊢ 𝑇  =  ( π  −  - π ) | 
						
							| 306 | 301 305 | eqtr4di | ⊢ ( 𝜑  →  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) )  =  𝑇 ) | 
						
							| 307 | 306 | oveq2d | ⊢ ( 𝜑  →  ( 𝑥  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) )  =  ( 𝑥  +  𝑇 ) ) | 
						
							| 308 | 307 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑥  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) ) )  =  ( 𝐺 ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 309 | 308 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑥  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) ) )  =  ( 𝐺 ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 310 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 311 | 11 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  ℂ )  →  ( 𝐺 ‘ 𝑥 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 312 | 310 210 311 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 313 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑋  ∈  ℂ ) | 
						
							| 314 | 203 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 315 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 316 | 315 38 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 317 | 15 316 | eqeltri | ⊢ 𝑇  ∈  ℝ | 
						
							| 318 | 317 | a1i | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 319 | 318 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 320 | 319 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℂ ) | 
						
							| 321 | 313 314 320 | addassd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑋  +  𝑥 )  +  𝑇 )  =  ( 𝑋  +  ( 𝑥  +  𝑇 ) ) ) | 
						
							| 322 | 321 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑋  +  ( 𝑥  +  𝑇 ) )  =  ( ( 𝑋  +  𝑥 )  +  𝑇 ) ) | 
						
							| 323 | 322 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  =  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) ) ) | 
						
							| 324 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝜑 ) | 
						
							| 325 | 324 204 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝜑  ∧  ( 𝑋  +  𝑥 )  ∈  ℝ ) ) | 
						
							| 326 |  | eleq1 | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( 𝑠  ∈  ℝ  ↔  ( 𝑋  +  𝑥 )  ∈  ℝ ) ) | 
						
							| 327 | 326 | anbi2d | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( ( 𝜑  ∧  𝑠  ∈  ℝ )  ↔  ( 𝜑  ∧  ( 𝑋  +  𝑥 )  ∈  ℝ ) ) ) | 
						
							| 328 |  | oveq1 | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( 𝑠  +  𝑇 )  =  ( ( 𝑋  +  𝑥 )  +  𝑇 ) ) | 
						
							| 329 | 328 | fveq2d | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) ) ) | 
						
							| 330 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) | 
						
							| 331 | 329 330 | eqeq12d | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑠 )  ↔  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) | 
						
							| 332 | 327 331 | imbi12d | ⊢ ( 𝑠  =  ( 𝑋  +  𝑥 )  →  ( ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑠 ) )  ↔  ( ( 𝜑  ∧  ( 𝑋  +  𝑥 )  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) ) | 
						
							| 333 |  | eleq1 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑥  ∈  ℝ  ↔  𝑠  ∈  ℝ ) ) | 
						
							| 334 | 333 | anbi2d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  𝑠  ∈  ℝ ) ) ) | 
						
							| 335 |  | oveq1 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑥  +  𝑇 )  =  ( 𝑠  +  𝑇 ) ) | 
						
							| 336 | 335 | fveq2d | ⊢ ( 𝑥  =  𝑠  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) ) ) | 
						
							| 337 |  | fveq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 338 | 336 337 | eqeq12d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑠 ) ) ) | 
						
							| 339 | 334 338 | imbi12d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑠 ) ) ) ) | 
						
							| 340 | 339 10 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑠  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 341 | 332 340 | vtoclg | ⊢ ( ( 𝑋  +  𝑥 )  ∈  ℝ  →  ( ( 𝜑  ∧  ( 𝑋  +  𝑥 )  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) | 
						
							| 342 | 204 325 341 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑥 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) | 
						
							| 343 | 323 342 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 344 | 343 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 345 | 4 15 | dirkerper | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 346 | 345 | eqcomd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 347 | 346 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 348 | 344 347 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 349 | 196 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝐺  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) | 
						
							| 350 |  | oveq2 | ⊢ ( 𝑠  =  ( 𝑥  +  𝑇 )  →  ( 𝑋  +  𝑠 )  =  ( 𝑋  +  ( 𝑥  +  𝑇 ) ) ) | 
						
							| 351 | 350 | fveq2d | ⊢ ( 𝑠  =  ( 𝑥  +  𝑇 )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  =  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 352 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑥  +  𝑇 )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 353 | 351 352 | oveq12d | ⊢ ( 𝑠  =  ( 𝑥  +  𝑇 )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 354 | 353 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  ∧  𝑠  =  ( 𝑥  +  𝑇 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 355 | 317 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 356 | 310 355 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  +  𝑇 )  ∈  ℝ ) | 
						
							| 357 | 317 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 358 | 203 357 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  +  𝑇 )  ∈  ℝ ) | 
						
							| 359 | 202 358 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑋  +  ( 𝑥  +  𝑇 ) )  ∈  ℝ ) | 
						
							| 360 | 201 359 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 361 | 360 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 362 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 363 | 362 356 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) )  ∈  ℝ ) | 
						
							| 364 | 363 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) )  ∈  ℂ ) | 
						
							| 365 | 361 364 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 366 | 349 354 356 365 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑥  +  𝑇 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) ) ) | 
						
							| 367 | 366 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑥  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑥  +  𝑇 ) ) )  =  ( 𝐺 ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 368 | 312 348 367 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 369 | 309 368 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑥  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 370 | 196 | reseq1i | ⊢ ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 371 | 370 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 372 |  | ioossre | ⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 373 |  | resmpt | ⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) | 
						
							| 374 | 372 373 | ax-mp | ⊢ ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 375 | 371 374 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) | 
						
							| 376 | 273 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 377 | 376 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 378 | 276 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 379 | 378 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 380 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 381 |  | elioore | ⊢ ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 382 | 381 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 383 | 380 382 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 384 | 383 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 385 |  | eleq1 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↔  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 386 | 385 | anbi2d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 387 | 191 | breq2d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑥 )  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑠 ) ) ) | 
						
							| 388 | 386 387 | imbi12d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑥 ) )  ↔  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑠 ) ) ) ) | 
						
							| 389 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 390 | 283 281 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 391 | 390 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 392 | 389 391 | addcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝑊 ‘ 𝑖 )  +  𝑋 ) ) | 
						
							| 393 | 283 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 )  +  𝑋 )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  +  𝑋 ) ) | 
						
							| 394 | 273 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 395 | 394 389 | npcand | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  𝑋 )  +  𝑋 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 396 | 392 393 395 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 397 | 396 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 398 | 390 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 399 |  | elioore | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 400 | 399 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 401 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 402 | 390 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 403 | 402 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 404 | 293 292 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 405 | 404 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 406 | 405 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 407 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 408 |  | ioogtlb | ⊢ ( ( ( 𝑊 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 409 | 403 406 407 408 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 410 | 398 400 401 409 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) )  <  ( 𝑋  +  𝑥 ) ) | 
						
							| 411 | 397 410 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑥 ) ) | 
						
							| 412 | 388 411 | chvarvv | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑠 ) ) | 
						
							| 413 | 191 | breq1d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝑋  +  𝑥 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑋  +  𝑠 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 414 | 386 413 | imbi12d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑠 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 415 | 404 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 416 |  | iooltub | ⊢ ( ( ( 𝑊 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 417 | 403 406 407 416 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 418 | 400 415 401 417 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  <  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 419 | 404 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℂ ) | 
						
							| 420 | 389 419 | addcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑊 ‘ ( 𝑖  +  1 ) )  +  𝑋 ) ) | 
						
							| 421 | 293 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ ( 𝑖  +  1 ) )  +  𝑋 )  =  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 )  +  𝑋 ) ) | 
						
							| 422 | 276 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℂ ) | 
						
							| 423 | 422 389 | npcand | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 )  +  𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 424 | 420 421 423 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 425 | 424 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 426 | 418 425 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 427 | 414 426 | chvarvv | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑠 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 428 | 377 379 384 412 427 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 429 | 191 | cbvmptv | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑠 ) ) | 
						
							| 430 | 429 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑠 ) ) ) | 
						
							| 431 |  | ioossre | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 432 | 431 | a1i | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 433 | 9 432 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 434 | 433 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 435 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 436 | 428 430 434 435 | fmptco | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) ) | 
						
							| 437 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) ) | 
						
							| 438 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 439 | 438 | a1i | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 440 | 439 154 439 | constcncfg | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝑋 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 441 |  | cncfmptid | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 442 | 438 438 441 | mp2an | ⊢ ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 443 | 442 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 444 | 440 443 | addcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 445 | 444 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 446 |  | ioosscn | ⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ | 
						
							| 447 | 446 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 448 |  | ioosscn | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ | 
						
							| 449 | 448 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 450 | 376 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 451 | 378 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 452 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 453 | 399 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 454 | 452 453 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ℝ ) | 
						
							| 455 | 454 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ℝ ) | 
						
							| 456 | 450 451 455 411 426 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 457 | 437 445 447 449 456 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 458 | 457 12 | cncfco | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 459 | 436 458 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 460 | 459 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 461 |  | eqid | ⊢ ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 462 | 82 | feqmptd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 463 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ℝ –cn→ ℝ )  ⊆  ( ℝ –cn→ ℂ ) ) | 
						
							| 464 | 47 438 463 | mp2an | ⊢ ( ℝ –cn→ ℝ )  ⊆  ( ℝ –cn→ ℂ ) | 
						
							| 465 | 4 | dirkercncf | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 466 | 464 465 | sselid | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 467 | 462 466 | eqeltrrd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 468 | 372 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 469 | 438 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  ℂ  ⊆  ℂ ) | 
						
							| 470 |  | cncff | ⊢ ( ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℂ )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) | 
						
							| 471 | 466 470 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) | 
						
							| 472 | 471 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) | 
						
							| 473 | 381 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 474 | 472 473 | ffvelcdmd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 475 | 461 467 468 469 474 | cncfmptssg | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 476 | 475 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 477 | 460 476 | mulcncf | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 478 | 375 477 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 479 | 453 205 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ∈  ℂ ) | 
						
							| 480 | 479 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ∈  ℂ ) | 
						
							| 481 |  | eqid | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) | 
						
							| 482 | 480 481 | fmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 483 | 482 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 484 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 485 | 372 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 486 | 484 485 | fssresd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 487 | 47 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 488 | 486 487 | fssd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 489 |  | eqid | ⊢ ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 490 |  | fdm | ⊢ ( 𝐹 : ℝ ⟶ ℂ  →  dom  𝐹  =  ℝ ) | 
						
							| 491 | 49 490 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  ℝ ) | 
						
							| 492 | 431 491 | sseqtrrid | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹 ) | 
						
							| 493 |  | ssdmres | ⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹  ↔  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 494 | 492 493 | sylib | ⊢ ( 𝜑  →  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 495 | 494 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 496 | 495 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 497 | 456 496 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 498 | 273 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 499 | 498 411 | gtned | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ≠  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 500 |  | eldifsn | ⊢ ( ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } )  ↔  ( ( 𝑋  +  𝑥 )  ∈  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝑋  +  𝑥 )  ≠  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 501 | 497 499 500 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 502 | 501 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∀ 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 503 |  | eqid | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) | 
						
							| 504 | 503 | rnmptss | ⊢ ( ∀ 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } )  →  ran  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ⊆  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 505 | 502 504 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ran  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ⊆  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 506 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ) | 
						
							| 507 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑊 ‘ 𝑖 )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 508 | 507 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  =  ( 𝑊 ‘ 𝑖 ) )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 509 | 390 | leidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ≤  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 510 | 390 404 294 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ≤  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 511 | 390 404 390 509 510 | eliccd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 512 | 396 273 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 513 | 506 508 511 512 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 514 | 396 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 515 | 513 514 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 516 | 390 404 | iccssred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 517 | 516 47 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 518 | 517 | resmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ) | 
						
							| 519 |  | rescncf | ⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ∈  ( ℂ –cn→ ℂ )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) ) | 
						
							| 520 | 517 445 519 | sylc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 521 | 518 520 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 522 | 521 511 | cnlimci | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ 𝑖 ) )  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 523 | 515 522 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 524 |  | ioossicc | ⊢ ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 525 |  | resmpt | ⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ) | 
						
							| 526 | 524 525 | ax-mp | ⊢ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) | 
						
							| 527 | 526 | eqcomi | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 528 | 527 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 529 | 528 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 530 | 154 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℂ ) | 
						
							| 531 | 390 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 532 | 404 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 533 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 534 |  | eliccre | ⊢ ( ( ( 𝑊 ‘ 𝑖 )  ∈  ℝ  ∧  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 535 | 531 532 533 534 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 536 | 535 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 537 | 530 536 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ℂ ) | 
						
							| 538 |  | eqid | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) | 
						
							| 539 | 537 538 | fmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 540 | 390 404 294 539 | limciccioolb | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 541 | 529 540 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 542 | 523 541 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 543 | 505 542 13 | limccog | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 544 | 49 432 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 545 | 544 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 546 | 456 503 | fmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 547 |  | fcompt | ⊢ ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  ∧  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) : ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  =  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 548 | 545 546 547 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  =  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 549 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ) | 
						
							| 550 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  𝑦 ) ) | 
						
							| 551 | 550 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  =  𝑦 )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  𝑦 ) ) | 
						
							| 552 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 553 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 554 | 372 552 | sselid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 555 | 553 554 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑦 )  ∈  ℝ ) | 
						
							| 556 | 549 551 552 555 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 )  =  ( 𝑋  +  𝑦 ) ) | 
						
							| 557 | 556 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 558 | 557 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 559 | 376 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 560 | 378 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 561 | 555 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑦 )  ∈  ℝ ) | 
						
							| 562 | 396 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 563 | 390 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 564 | 554 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 565 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 566 | 402 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 567 | 405 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 568 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 569 |  | ioogtlb | ⊢ ( ( ( 𝑊 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  <  𝑦 ) | 
						
							| 570 | 566 567 568 569 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  <  𝑦 ) | 
						
							| 571 | 563 564 565 570 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  ( 𝑊 ‘ 𝑖 ) )  <  ( 𝑋  +  𝑦 ) ) | 
						
							| 572 | 562 571 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  𝑦 ) ) | 
						
							| 573 | 404 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 574 |  | iooltub | ⊢ ( ( ( 𝑊 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 575 | 566 567 568 574 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑦  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 576 | 564 573 565 575 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑦 )  <  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 577 | 424 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 578 | 576 577 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑦 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 579 | 559 560 561 572 578 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑦 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 580 |  | fvres | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑋  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 581 | 579 580 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑋  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 582 | 558 581 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 583 | 582 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) ) | 
						
							| 584 | 550 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 585 | 584 | cbvmptv | ⊢ ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  =  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 586 | 583 585 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑦  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) | 
						
							| 587 | 548 586 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) | 
						
							| 588 | 587 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 589 | 543 588 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 590 | 589 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 591 |  | fvres | ⊢ ( ( 𝑊 ‘ 𝑖 )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 592 | 511 591 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 593 | 592 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 594 | 593 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 595 | 516 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 596 | 465 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 597 |  | rescncf | ⊢ ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ  →  ( ( 𝐷 ‘ 𝑛 )  ∈  ( ℝ –cn→ ℝ )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ ) ) ) | 
						
							| 598 | 595 596 597 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ ) ) | 
						
							| 599 | 511 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 600 | 598 599 | cnlimci | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ 𝑖 ) )  ∈  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 601 | 594 600 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) )  ∈  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 602 | 524 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 603 | 602 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 604 | 603 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 605 | 604 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 606 | 605 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 607 | 390 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 608 | 404 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 609 | 294 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ 𝑖 )  <  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 610 | 471 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℂ ) | 
						
							| 611 | 610 595 | fssresd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 612 | 607 608 609 611 | limciccioolb | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 613 | 606 612 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 614 | 601 613 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) )  ∈  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 615 | 483 488 489 590 614 | mullimcf | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 616 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  =  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ) | 
						
							| 617 | 192 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  =  𝑠 )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 618 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 619 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 620 | 619 383 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 621 | 620 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 622 | 616 617 618 621 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 623 | 622 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 624 |  | fvres | ⊢ ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 625 | 624 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 626 | 623 625 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 627 | 626 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) ) | 
						
							| 628 | 627 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  =  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 629 | 375 628 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  =  ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 630 | 629 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) )  =  ( ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 631 | 615 630 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ 𝑖 ) ) )  ∈  ( ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ 𝑖 ) ) ) | 
						
							| 632 | 455 426 | ltned | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ≠  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 633 |  | eldifsn | ⊢ ( ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↔  ( ( 𝑋  +  𝑥 )  ∈  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝑋  +  𝑥 )  ≠  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 634 | 497 632 633 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 635 | 634 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∀ 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 636 | 503 | rnmptss | ⊢ ( ∀ 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ( 𝑋  +  𝑥 )  ∈  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  →  ran  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ⊆  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 637 | 635 636 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ran  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ⊆  ( dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∖  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 638 | 404 | leidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 639 | 390 404 404 510 638 | eliccd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 640 | 521 639 | cnlimci | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 641 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑊 ‘ ( 𝑖  +  1 ) )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 642 | 641 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  =  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 643 | 277 404 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ∈  ℝ ) | 
						
							| 644 | 506 642 639 643 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑋  +  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 645 | 644 424 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 646 | 528 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 647 | 390 404 294 539 | limcicciooub | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 648 | 646 647 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 649 | 640 645 648 | 3eltr3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 650 | 637 649 14 | limccog | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 651 | 587 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∘  ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 652 | 650 651 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 653 | 652 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 654 | 639 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 655 | 598 654 | cnlimci | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ∈  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 656 |  | fvres | ⊢ ( ( 𝑊 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 657 | 654 656 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 658 | 607 608 609 611 | limcicciooub | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 659 | 658 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 660 |  | resabs1 | ⊢ ( ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 661 | 524 660 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 662 | 661 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 663 | 659 662 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) [,] ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 664 | 655 657 663 | 3eltr3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ∈  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 665 | 483 488 489 653 664 | mullimcf | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐿  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 666 | 629 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑠  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝑥  ∈  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) ) ) ‘ 𝑠 )  ·  ( ( ( 𝐷 ‘ 𝑛 )  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑠 ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 667 | 665 666 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐿  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( 𝐺  ↾  ( ( 𝑊 ‘ 𝑖 ) (,) ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 668 | 130 133 225 226 16 114 300 211 369 478 631 667 | fourierdlem110 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( ( - π  −  𝑋 )  −  - 𝑋 ) [,] ( ( π  −  𝑋 )  −  - 𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 669 | 668 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( - π  −  𝑋 )  −  - 𝑋 ) [,] ( ( π  −  𝑋 )  −  - 𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 670 | 129 | recnd | ⊢ ( 𝜑  →  ( - π  −  𝑋 )  ∈  ℂ ) | 
						
							| 671 | 670 154 | subnegd | ⊢ ( 𝜑  →  ( ( - π  −  𝑋 )  −  - 𝑋 )  =  ( ( - π  −  𝑋 )  +  𝑋 ) ) | 
						
							| 672 | 156 154 | npcand | ⊢ ( 𝜑  →  ( ( - π  −  𝑋 )  +  𝑋 )  =  - π ) | 
						
							| 673 | 671 672 | eqtrd | ⊢ ( 𝜑  →  ( ( - π  −  𝑋 )  −  - 𝑋 )  =  - π ) | 
						
							| 674 | 132 | recnd | ⊢ ( 𝜑  →  ( π  −  𝑋 )  ∈  ℂ ) | 
						
							| 675 | 674 154 | subnegd | ⊢ ( 𝜑  →  ( ( π  −  𝑋 )  −  - 𝑋 )  =  ( ( π  −  𝑋 )  +  𝑋 ) ) | 
						
							| 676 | 155 154 | npcand | ⊢ ( 𝜑  →  ( ( π  −  𝑋 )  +  𝑋 )  =  π ) | 
						
							| 677 | 675 676 | eqtrd | ⊢ ( 𝜑  →  ( ( π  −  𝑋 )  −  - 𝑋 )  =  π ) | 
						
							| 678 | 673 677 | oveq12d | ⊢ ( 𝜑  →  ( ( ( - π  −  𝑋 )  −  - 𝑋 ) [,] ( ( π  −  𝑋 )  −  - 𝑋 ) )  =  ( - π [,] π ) ) | 
						
							| 679 | 678 | itgeq1d | ⊢ ( 𝜑  →  ∫ ( ( ( - π  −  𝑋 )  −  - 𝑋 ) [,] ( ( π  −  𝑋 )  −  - 𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 680 | 679 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( ( - π  −  𝑋 )  −  - 𝑋 ) [,] ( ( π  −  𝑋 )  −  - 𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 681 | 669 680 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 682 |  | fveq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 683 | 682 | cbvitgv | ⊢ ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 )  d 𝑠 | 
						
							| 684 | 211 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 685 | 44 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( - π [,] π ) )  →  𝑥  ∈  ℝ ) | 
						
							| 686 | 684 685 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ∈  ( - π [,] π ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 687 | 76 77 686 | itgioo | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 688 |  | elioore | ⊢ ( 𝑠  ∈  ( - π (,) π )  →  𝑠  ∈  ℝ ) | 
						
							| 689 | 688 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 690 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π (,) π ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 691 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π (,) π ) )  →  𝑋  ∈  ℝ ) | 
						
							| 692 | 688 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π (,) π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 693 | 691 692 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 694 | 690 693 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 695 | 694 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 696 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 697 | 696 689 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 698 | 697 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 699 | 695 698 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 700 | 689 699 197 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π (,) π ) )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 701 | 700 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) π ) ( 𝐺 ‘ 𝑠 )  d 𝑠  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 702 | 683 687 701 | 3eqtr3a | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑥 )  d 𝑥  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 703 | 224 681 702 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( ( - π  −  𝑋 ) (,) ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 704 | 75 178 703 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑆 ‘ 𝑛 )  =  ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 705 | 77 | renegcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - π  ∈  ℝ ) | 
						
							| 706 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 707 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 708 |  | negpilt0 | ⊢ - π  <  0 | 
						
							| 709 | 39 707 708 | ltleii | ⊢ - π  ≤  0 | 
						
							| 710 | 709 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  - π  ≤  0 ) | 
						
							| 711 |  | pipos | ⊢ 0  <  π | 
						
							| 712 | 707 38 711 | ltleii | ⊢ 0  ≤  π | 
						
							| 713 | 712 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  π ) | 
						
							| 714 | 76 77 706 710 713 | eliccd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ∈  ( - π [,] π ) ) | 
						
							| 715 |  | ioossicc | ⊢ ( - π (,) 0 )  ⊆  ( - π [,] 0 ) | 
						
							| 716 | 715 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - π (,) 0 )  ⊆  ( - π [,] 0 ) ) | 
						
							| 717 |  | ioombl | ⊢ ( - π (,) 0 )  ∈  dom  vol | 
						
							| 718 | 717 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - π (,) 0 )  ∈  dom  vol ) | 
						
							| 719 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 720 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 721 | 39 | a1i | ⊢ ( 𝑠  ∈  ( - π [,] 0 )  →  - π  ∈  ℝ ) | 
						
							| 722 |  | 0red | ⊢ ( 𝑠  ∈  ( - π [,] 0 )  →  0  ∈  ℝ ) | 
						
							| 723 |  | id | ⊢ ( 𝑠  ∈  ( - π [,] 0 )  →  𝑠  ∈  ( - π [,] 0 ) ) | 
						
							| 724 |  | eliccre | ⊢ ( ( - π  ∈  ℝ  ∧  0  ∈  ℝ  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  𝑠  ∈  ℝ ) | 
						
							| 725 | 721 722 723 724 | syl3anc | ⊢ ( 𝑠  ∈  ( - π [,] 0 )  →  𝑠  ∈  ℝ ) | 
						
							| 726 | 725 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  𝑠  ∈  ℝ ) | 
						
							| 727 | 720 726 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 728 | 719 727 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 729 | 728 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 730 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 731 | 725 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  𝑠  ∈  ℝ ) | 
						
							| 732 | 730 731 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 733 | 732 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 734 | 729 733 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 735 | 731 734 197 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 736 | 735 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( - π [,] 0 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 737 | 736 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π [,] 0 )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  =  ( 𝑠  ∈  ( - π [,] 0 )  ↦  ( 𝐺 ‘ 𝑠 ) ) ) | 
						
							| 738 | 306 | oveq2d | ⊢ ( 𝜑  →  ( 𝑠  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) )  =  ( 𝑠  +  𝑇 ) ) | 
						
							| 739 | 738 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝑠  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) )  =  ( 𝑠  +  𝑇 ) ) | 
						
							| 740 | 739 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑠  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) ) )  =  ( 𝐺 ‘ ( 𝑠  +  𝑇 ) ) ) | 
						
							| 741 | 11 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) | 
						
							| 742 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑠  +  𝑇 )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑠  +  𝑇 ) ) ) | 
						
							| 743 | 742 | fveq2d | ⊢ ( 𝑥  =  ( 𝑠  +  𝑇 )  →  ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) ) ) | 
						
							| 744 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑠  +  𝑇 )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) ) | 
						
							| 745 | 743 744 | oveq12d | ⊢ ( 𝑥  =  ( 𝑠  +  𝑇 )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) ) ) | 
						
							| 746 | 745 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  ∧  𝑥  =  ( 𝑠  +  𝑇 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑥 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) ) ) | 
						
							| 747 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑠  ∈  ℝ ) | 
						
							| 748 | 317 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 749 | 747 748 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝑠  +  𝑇 )  ∈  ℝ ) | 
						
							| 750 | 749 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝑠  +  𝑇 )  ∈  ℝ ) | 
						
							| 751 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 752 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑋  ∈  ℝ ) | 
						
							| 753 | 752 749 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝑋  +  ( 𝑠  +  𝑇 ) )  ∈  ℝ ) | 
						
							| 754 | 751 753 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 755 | 754 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 756 | 82 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | 
						
							| 757 | 756 750 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) )  ∈  ℝ ) | 
						
							| 758 | 757 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) )  ∈  ℂ ) | 
						
							| 759 | 755 758 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) )  ∈  ℂ ) | 
						
							| 760 | 741 746 750 759 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑠  +  𝑇 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) ) ) | 
						
							| 761 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑋  ∈  ℂ ) | 
						
							| 762 | 747 | recnd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑠  ∈  ℂ ) | 
						
							| 763 | 319 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝑇  ∈  ℂ ) | 
						
							| 764 | 761 762 763 | addassd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( ( 𝑋  +  𝑠 )  +  𝑇 )  =  ( 𝑋  +  ( 𝑠  +  𝑇 ) ) ) | 
						
							| 765 | 764 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝑋  +  ( 𝑠  +  𝑇 ) )  =  ( ( 𝑋  +  𝑠 )  +  𝑇 ) ) | 
						
							| 766 | 765 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  =  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) ) ) | 
						
							| 767 | 752 747 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 768 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  𝜑 ) | 
						
							| 769 | 768 767 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝜑  ∧  ( 𝑋  +  𝑠 )  ∈  ℝ ) ) | 
						
							| 770 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( 𝑥  ∈  ℝ  ↔  ( 𝑋  +  𝑠 )  ∈  ℝ ) ) | 
						
							| 771 | 770 | anbi2d | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  ( 𝑋  +  𝑠 )  ∈  ℝ ) ) ) | 
						
							| 772 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( 𝑥  +  𝑇 )  =  ( ( 𝑋  +  𝑠 )  +  𝑇 ) ) | 
						
							| 773 | 772 | fveq2d | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) ) ) | 
						
							| 774 | 773 435 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) ) | 
						
							| 775 | 771 774 | imbi12d | ⊢ ( 𝑥  =  ( 𝑋  +  𝑠 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  ( 𝑋  +  𝑠 )  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) ) ) | 
						
							| 776 | 775 10 | vtoclg | ⊢ ( ( 𝑋  +  𝑠 )  ∈  ℝ  →  ( ( 𝜑  ∧  ( 𝑋  +  𝑠 )  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) ) | 
						
							| 777 | 767 769 776 | sylc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑋  +  𝑠 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 778 | 766 777 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 779 | 778 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 780 | 4 15 | dirkerper | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 781 | 780 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) )  =  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) | 
						
							| 782 | 779 781 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 783 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  𝑠  ∈  ℝ ) | 
						
							| 784 | 782 759 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 785 | 783 784 197 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 786 | 785 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 787 | 782 786 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑋  +  ( 𝑠  +  𝑇 ) ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ ( 𝑠  +  𝑇 ) ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 788 | 740 760 787 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ℝ )  →  ( 𝐺 ‘ ( 𝑠  +  ( ( π  −  𝑋 )  −  ( - π  −  𝑋 ) ) ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 789 |  | 0ltpnf | ⊢ 0  <  +∞ | 
						
							| 790 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 791 |  | elioo2 | ⊢ ( ( - π  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 0  ∈  ( - π (,) +∞ )  ↔  ( 0  ∈  ℝ  ∧  - π  <  0  ∧  0  <  +∞ ) ) ) | 
						
							| 792 | 52 790 791 | mp2an | ⊢ ( 0  ∈  ( - π (,) +∞ )  ↔  ( 0  ∈  ℝ  ∧  - π  <  0  ∧  0  <  +∞ ) ) | 
						
							| 793 | 707 708 789 792 | mpbir3an | ⊢ 0  ∈  ( - π (,) +∞ ) | 
						
							| 794 | 793 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ∈  ( - π (,) +∞ ) ) | 
						
							| 795 | 16 225 114 300 211 788 478 631 667 76 794 | fourierdlem105 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π [,] 0 )  ↦  ( 𝐺 ‘ 𝑠 ) )  ∈  𝐿1 ) | 
						
							| 796 | 737 795 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π [,] 0 )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 797 | 716 718 734 796 | iblss | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( - π (,) 0 )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 798 |  | elioore | ⊢ ( 𝑠  ∈  ( 0 (,) π )  →  𝑠  ∈  ℝ ) | 
						
							| 799 | 798 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 800 | 799 784 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 801 | 799 800 197 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( 𝐺 ‘ 𝑠 )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) | 
						
							| 802 | 801 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 (,) π ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 803 | 802 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( 0 (,) π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  =  ( 𝑠  ∈  ( 0 (,) π )  ↦  ( 𝐺 ‘ 𝑠 ) ) ) | 
						
							| 804 |  | ioossicc | ⊢ ( 0 (,) π )  ⊆  ( 0 [,] π ) | 
						
							| 805 | 804 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0 (,) π )  ⊆  ( 0 [,] π ) ) | 
						
							| 806 |  | ioombl | ⊢ ( 0 (,) π )  ∈  dom  vol | 
						
							| 807 | 806 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0 (,) π )  ∈  dom  vol ) | 
						
							| 808 | 211 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 [,] π ) )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 809 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] π ) )  →  0  ∈  ℝ ) | 
						
							| 810 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] π ) )  →  π  ∈  ℝ ) | 
						
							| 811 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] π ) )  →  𝑠  ∈  ( 0 [,] π ) ) | 
						
							| 812 |  | eliccre | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ  ∧  𝑠  ∈  ( 0 [,] π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 813 | 809 810 811 812 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 814 | 813 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 [,] π ) )  →  𝑠  ∈  ℝ ) | 
						
							| 815 | 808 814 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑠  ∈  ( 0 [,] π ) )  →  ( 𝐺 ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 816 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 817 | 816 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℝ* ) | 
						
							| 818 | 790 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  +∞  ∈  ℝ* ) | 
						
							| 819 | 711 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  <  π ) | 
						
							| 820 |  | ltpnf | ⊢ ( π  ∈  ℝ  →  π  <  +∞ ) | 
						
							| 821 | 38 820 | mp1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  <  +∞ ) | 
						
							| 822 | 817 818 77 819 821 | eliood | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  π  ∈  ( 0 (,) +∞ ) ) | 
						
							| 823 | 16 225 114 300 211 788 478 631 667 706 822 | fourierdlem105 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( 0 [,] π )  ↦  ( 𝐺 ‘ 𝑠 ) )  ∈  𝐿1 ) | 
						
							| 824 | 805 807 815 823 | iblss | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( 0 (,) π )  ↦  ( 𝐺 ‘ 𝑠 ) )  ∈  𝐿1 ) | 
						
							| 825 | 803 824 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑠  ∈  ( 0 (,) π )  ↦  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) )  ∈  𝐿1 ) | 
						
							| 826 | 705 77 714 699 797 825 | itgsplitioo | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∫ ( - π (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) | 
						
							| 827 | 704 826 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑆 ‘ 𝑛 )  =  ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠  +  ∫ ( 0 (,) π ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) )  d 𝑠 ) ) |