| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem101.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
| 2 |
|
fourierdlem101.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 3 |
|
fourierdlem101.g |
⊢ 𝐺 = ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 4 |
|
fourierdlem101.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem101.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 6 |
|
fourierdlem101.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
fourierdlem101.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 8 |
|
fourierdlem101.f |
⊢ ( 𝜑 → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 9 |
|
fourierdlem101.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 10 |
|
fourierdlem101.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 11 |
|
fourierdlem101.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑡 ∈ ( - π [,] π ) ) |
| 13 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑁 ∈ ℕ ) |
| 15 |
|
pire |
⊢ π ∈ ℝ |
| 16 |
15
|
renegcli |
⊢ - π ∈ ℝ |
| 17 |
|
eliccre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑡 ∈ ℝ ) |
| 18 |
16 15 17
|
mp3an12 |
⊢ ( 𝑡 ∈ ( - π [,] π ) → 𝑡 ∈ ℝ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑡 ∈ ℝ ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
| 21 |
19 20
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 22 |
1
|
dirkerre |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑡 − 𝑋 ) ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 23 |
14 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 24 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℂ ) |
| 25 |
13 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ℂ ) |
| 26 |
3
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ ( - π [,] π ) ∧ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 27 |
12 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( - π [,] π ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( 𝐺 ‘ 𝑡 ) ) |
| 29 |
28
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑡 ) d 𝑡 ) |
| 30 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 32 |
31
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 33 |
25 3
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( - π [,] π ) ⟶ ℂ ) |
| 34 |
3
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 35 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 36 |
16
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 37 |
36
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 39 |
15
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 40 |
39
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 42 |
2 5 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 45 |
38 41 43 44
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 46 |
35 45
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 47 |
46
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ) |
| 48 |
34 47
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ) |
| 49 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 50 |
49 46
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 51 |
50 9
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 52 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) |
| 53 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) → 𝑠 = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) |
| 54 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ) |
| 55 |
|
oveq1 |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 − 𝑋 ) = ( 𝑟 − 𝑋 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑡 = 𝑟 ) → ( 𝑡 − 𝑋 ) = ( 𝑟 − 𝑋 ) ) |
| 57 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 58 |
|
elioore |
⊢ ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑟 ∈ ℝ ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 60 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 61 |
59 60
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑟 − 𝑋 ) ∈ ℝ ) |
| 62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑟 − 𝑋 ) ∈ ℝ ) |
| 63 |
54 56 57 62
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) = ( 𝑟 − 𝑋 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) = ( 𝑟 − 𝑋 ) ) |
| 65 |
53 64
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) → 𝑠 = ( 𝑟 − 𝑋 ) ) |
| 66 |
65
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) |
| 67 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ℝ ) |
| 69 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 70 |
68 69
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 71 |
70
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 72 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) |
| 73 |
71 72
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
| 74 |
73
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ∈ ℝ ) |
| 75 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 76 |
1
|
dirkerre |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑟 − 𝑋 ) ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ∈ ℝ ) |
| 77 |
75 62 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ∈ ℝ ) |
| 78 |
52 66 74 77
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) |
| 79 |
78
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) ) |
| 80 |
79
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) = ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) ) ) |
| 81 |
55
|
fveq2d |
⊢ ( 𝑡 = 𝑟 → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) |
| 82 |
81
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) |
| 83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟 − 𝑋 ) ) ) ) |
| 84 |
1
|
dirkerre |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ∈ ℝ ) |
| 85 |
6 84
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ∈ ℝ ) |
| 86 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) |
| 87 |
85 86
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ ) |
| 89 |
|
fcompt |
⊢ ( ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ ∧ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∘ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ) = ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) ) ) |
| 90 |
88 73 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∘ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ) = ( 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ‘ 𝑟 ) ) ) ) |
| 91 |
80 83 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∘ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ) ) |
| 92 |
|
eqid |
⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) |
| 93 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑡 ∈ ℂ ) |
| 94 |
7
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 96 |
93 95
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 + - 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 97 |
96
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 − 𝑋 ) = ( 𝑡 + - 𝑋 ) ) |
| 98 |
97
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑡 + - 𝑋 ) ) ) |
| 99 |
94
|
negcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℂ ) |
| 100 |
|
eqid |
⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑡 + - 𝑋 ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑡 + - 𝑋 ) ) |
| 101 |
100
|
addccncf |
⊢ ( - 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 102 |
99 101
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 103 |
98 102
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 105 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 106 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 107 |
105 106
|
sstri |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 108 |
107
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 109 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
| 110 |
92 104 108 109 71
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
| 111 |
85
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ∈ ℂ ) |
| 112 |
111 86
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) |
| 113 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 114 |
1
|
dirkerf |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 115 |
6 114
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 116 |
115
|
feqmptd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) |
| 117 |
1
|
dirkercncf |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) ∈ ( ℝ –cn→ ℝ ) ) |
| 118 |
6 117
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) ∈ ( ℝ –cn→ ℝ ) ) |
| 119 |
116 118
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℝ ) ) |
| 120 |
|
cncfcdm |
⊢ ( ( ℂ ⊆ ℂ ∧ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℝ ) ) → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ↔ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) ) |
| 121 |
113 119 120
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ↔ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) ) |
| 122 |
112 121
|
mpbird |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 124 |
110 123
|
cncfco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∘ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 125 |
91 124
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 126 |
51 125
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 127 |
48 126
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 128 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 129 |
9 128
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 130 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 131 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 132 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 133 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 134 |
132 133
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 − 𝑋 ) ∈ ℝ ) |
| 135 |
130 134
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ∈ ℝ ) |
| 136 |
135
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ∈ ℂ ) |
| 137 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) |
| 138 |
136 137
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 140 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) |
| 141 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝑄 ‘ 𝑖 ) → ( 𝑡 − 𝑋 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 142 |
141
|
fveq2d |
⊢ ( 𝑡 = ( 𝑄 ‘ 𝑖 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 143 |
142
|
eqcomd |
⊢ ( 𝑡 = ( 𝑄 ‘ 𝑖 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 144 |
143
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 145 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ) |
| 146 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 147 |
146
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 148 |
147
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) ∧ 𝑠 = 𝑡 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 149 |
|
velsn |
⊢ ( 𝑡 ∈ { ( 𝑄 ‘ 𝑖 ) } ↔ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) |
| 150 |
149
|
notbii |
⊢ ( ¬ 𝑡 ∈ { ( 𝑄 ‘ 𝑖 ) } ↔ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) |
| 151 |
|
elunnel2 |
⊢ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ∧ ¬ 𝑡 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 152 |
150 151
|
sylan2br |
⊢ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 153 |
152
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 154 |
115
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 155 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 = ( 𝑄 ‘ 𝑖 ) ) |
| 156 |
18
|
ssriv |
⊢ ( - π [,] π ) ⊆ ℝ |
| 157 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
| 158 |
157 44
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 159 |
43 158
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( - π [,] π ) ) |
| 160 |
156 159
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 161 |
160
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 162 |
155 161
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 ∈ ℝ ) |
| 163 |
162
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 ∈ ℝ ) |
| 164 |
153 67
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → 𝑡 ∈ ℝ ) |
| 165 |
163 164
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑡 ∈ ℝ ) |
| 166 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑋 ∈ ℝ ) |
| 167 |
165 166
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 168 |
154 167
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 169 |
168
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 170 |
145 148 153 169
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ 𝑖 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 171 |
144 170
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 172 |
171
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 173 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 174 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 175 |
|
elun |
⊢ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↔ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 176 |
174 175
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 177 |
176
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 178 |
|
elsni |
⊢ ( 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } → 𝑠 = ( 𝑄 ‘ 𝑖 ) ) |
| 179 |
178
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → 𝑠 = ( 𝑄 ‘ 𝑖 ) ) |
| 180 |
160
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 181 |
179 180
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → 𝑠 ∈ ℝ ) |
| 182 |
181
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } → 𝑠 ∈ ℝ ) ) |
| 183 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } → 𝑠 ∈ ℝ ) ) |
| 184 |
|
pm3.44 |
⊢ ( ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) ∧ ( 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } → 𝑠 ∈ ℝ ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → 𝑠 ∈ ℝ ) ) |
| 185 |
131 183 184
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝑄 ‘ 𝑖 ) } ) → 𝑠 ∈ ℝ ) ) |
| 186 |
177 185
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑠 ∈ ℝ ) |
| 187 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑋 ∈ ℝ ) |
| 188 |
186 187
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑠 − 𝑋 ) ∈ ℝ ) |
| 189 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) = ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) |
| 190 |
188 189
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℝ ) |
| 191 |
|
fcompt |
⊢ ( ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ∧ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ∘ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ‘ 𝑡 ) ) ) ) |
| 192 |
173 190 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑁 ) ∘ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ‘ 𝑡 ) ) ) ) |
| 193 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) = ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) |
| 194 |
146
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ 𝑠 = 𝑡 ) → ( 𝑠 − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 195 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 196 |
193 194 195 167
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ‘ 𝑡 ) = ( 𝑡 − 𝑋 ) ) |
| 197 |
196
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 198 |
197
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 199 |
192 198
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐷 ‘ 𝑁 ) ∘ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) ) |
| 200 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑠 − 𝑋 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 − 𝑋 ) ) |
| 201 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑠 ∈ ℂ ) |
| 202 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 203 |
201 202
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → ( 𝑠 + - 𝑋 ) = ( 𝑠 − 𝑋 ) ) |
| 204 |
203
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → ( 𝑠 − 𝑋 ) = ( 𝑠 + - 𝑋 ) ) |
| 205 |
204
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑠 − 𝑋 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + - 𝑋 ) ) ) |
| 206 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑠 + - 𝑋 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + - 𝑋 ) ) |
| 207 |
206
|
addccncf |
⊢ ( - 𝑋 ∈ ℂ → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + - 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 208 |
99 207
|
syl |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + - 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 209 |
205 208
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑠 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ℂ ↦ ( 𝑠 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 211 |
160
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
| 212 |
211
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { ( 𝑄 ‘ 𝑖 ) } ⊆ ℂ ) |
| 213 |
108 212
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⊆ ℂ ) |
| 214 |
200 210 213 109 188
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ∈ ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℝ ) ) |
| 215 |
116 122
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 216 |
215
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 217 |
214 216
|
cncfco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑁 ) ∘ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) ∈ ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ ) ) |
| 218 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 219 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 220 |
218
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 221 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 222 |
221
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 223 |
220 222
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 224 |
223
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 225 |
218 219 224
|
cncfcn |
⊢ ( ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 226 |
213 113 225
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 227 |
217 226
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑁 ) ∘ ( 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( 𝑠 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 228 |
199 227
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 229 |
218
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 230 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ) |
| 231 |
229 213 230
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ) |
| 232 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) |
| 233 |
231 229 232
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) |
| 234 |
228 233
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) |
| 235 |
234
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) |
| 236 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 237 |
|
elsng |
⊢ ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ → ( ( 𝑄 ‘ 𝑖 ) ∈ { ( 𝑄 ‘ 𝑖 ) } ↔ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) ) |
| 238 |
160 237
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) ∈ { ( 𝑄 ‘ 𝑖 ) } ↔ ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) ) |
| 239 |
236 238
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ { ( 𝑄 ‘ 𝑖 ) } ) |
| 240 |
239
|
olcd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ ( 𝑄 ‘ 𝑖 ) ∈ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 241 |
|
elun |
⊢ ( ( 𝑄 ‘ 𝑖 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↔ ( ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ ( 𝑄 ‘ 𝑖 ) ∈ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 242 |
240 241
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 243 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑄 ‘ 𝑖 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) |
| 244 |
243
|
eleq2d |
⊢ ( 𝑠 = ( 𝑄 ‘ 𝑖 ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ↔ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) ) |
| 245 |
244
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ∧ ( 𝑄 ‘ 𝑖 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) |
| 246 |
235 242 245
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) |
| 247 |
172 246
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) |
| 248 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) |
| 249 |
219 218 248 139 108 211
|
ellimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ↔ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ 𝑖 ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) ) |
| 250 |
247 249
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 251 |
129 139 140 10 250
|
mullimcf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 252 |
|
fvres |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 253 |
252
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 254 |
253
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) |
| 255 |
254
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) ) |
| 256 |
255
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 257 |
251 256
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 258 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ) |
| 259 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = 𝑡 ) → 𝑠 = 𝑡 ) |
| 260 |
259
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = 𝑡 ) → ( 𝑠 − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 261 |
260
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑠 = 𝑡 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 262 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 263 |
115
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 264 |
263 71
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 265 |
258 261 262 264
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 266 |
265
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 267 |
266
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ) |
| 268 |
267
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 269 |
257 268
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 270 |
48
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 271 |
270
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 272 |
269 271
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 273 |
|
iftrue |
⊢ ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 274 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( 𝑡 − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 275 |
274
|
eqcomd |
⊢ ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 276 |
275
|
fveq2d |
⊢ ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 277 |
273 276
|
eqtrd |
⊢ ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 278 |
277
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 279 |
|
iffalse |
⊢ ( ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) |
| 280 |
279
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) |
| 281 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ) |
| 282 |
147
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑠 = 𝑡 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 283 |
|
elun |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 284 |
283
|
biimpi |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 285 |
284
|
orcomd |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ∨ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 286 |
285
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ∨ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 287 |
|
velsn |
⊢ ( 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ↔ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 288 |
287
|
notbii |
⊢ ( ¬ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ↔ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 289 |
288
|
biimpri |
⊢ ( ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ¬ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) |
| 290 |
289
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ¬ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) |
| 291 |
|
pm2.53 |
⊢ ( ( 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ∨ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ¬ 𝑡 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 292 |
286 290 291
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 293 |
173
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 294 |
292 67
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
| 295 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑋 ∈ ℝ ) |
| 296 |
294 295
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 297 |
293 296
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 298 |
281 282 292 297
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 299 |
280 298
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 300 |
278 299
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 301 |
300
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 302 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) |
| 303 |
106
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 304 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 305 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
| 306 |
304 305
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 307 |
92 103 303 303 306
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℝ –cn→ ℝ ) ) |
| 308 |
307 215
|
cncfcompt |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 309 |
308
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 310 |
105
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 311 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 312 |
311
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 313 |
43 312
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( - π [,] π ) ) |
| 314 |
156 313
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 315 |
314
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ⊆ ℝ ) |
| 316 |
310 315
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⊆ ℝ ) |
| 317 |
113
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℂ ⊆ ℂ ) |
| 318 |
173
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 319 |
316
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑡 ∈ ℝ ) |
| 320 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑋 ∈ ℝ ) |
| 321 |
319 320
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 322 |
318 321
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℝ ) |
| 323 |
322
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ∈ ℂ ) |
| 324 |
302 309 316 317 323
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) –cn→ ℂ ) ) |
| 325 |
156 106
|
sstri |
⊢ ( - π [,] π ) ⊆ ℂ |
| 326 |
325 313
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 327 |
326
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ⊆ ℂ ) |
| 328 |
108 327
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⊆ ℂ ) |
| 329 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 330 |
218 329 224
|
cncfcn |
⊢ ( ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 331 |
328 113 330
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 332 |
324 331
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 333 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 334 |
229 328 333
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 335 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∈ ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) |
| 336 |
334 229 335
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) |
| 337 |
332 336
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ⟶ ℂ ∧ ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) |
| 338 |
337
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) |
| 339 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 340 |
|
elsng |
⊢ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 341 |
314 340
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 342 |
339 341
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) |
| 343 |
342
|
olcd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 344 |
|
elun |
⊢ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∨ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 345 |
343 344
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 346 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 347 |
346
|
eleq2d |
⊢ ( 𝑠 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ↔ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 348 |
347
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 349 |
338 345 348
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 350 |
301 349
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 351 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) |
| 352 |
329 218 351 139 108 326
|
ellimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑡 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) , ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 353 |
350 352
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 354 |
129 139 140 11 353
|
mullimcf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 355 |
267 255 48
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 356 |
355
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) · ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠 − 𝑋 ) ) ) ‘ 𝑡 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 357 |
354 356
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 358 |
2 32 5 4 7 33 127 272 357
|
fourierdlem93 |
⊢ ( 𝜑 → ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑡 ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 ) |
| 359 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐺 = ( 𝑡 ∈ ( - π [,] π ) ↦ ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) ) |
| 360 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝑋 + 𝑠 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 361 |
360
|
oveq1d |
⊢ ( 𝑡 = ( 𝑋 + 𝑠 ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 362 |
361
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) ∧ 𝑡 = ( 𝑋 + 𝑠 ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) ) |
| 363 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝑋 + 𝑠 ) → ( 𝑡 − 𝑋 ) = ( ( 𝑋 + 𝑠 ) − 𝑋 ) ) |
| 364 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℂ ) |
| 365 |
36 7
|
resubcld |
⊢ ( 𝜑 → ( - π − 𝑋 ) ∈ ℝ ) |
| 366 |
365
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ∈ ℝ ) |
| 367 |
39 7
|
resubcld |
⊢ ( 𝜑 → ( π − 𝑋 ) ∈ ℝ ) |
| 368 |
367
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( π − 𝑋 ) ∈ ℝ ) |
| 369 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) |
| 370 |
|
eliccre |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 371 |
366 368 369 370
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 372 |
371
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ∈ ℂ ) |
| 373 |
364 372
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝑋 + 𝑠 ) − 𝑋 ) = 𝑠 ) |
| 374 |
363 373
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) ∧ 𝑡 = ( 𝑋 + 𝑠 ) ) → ( 𝑡 − 𝑋 ) = 𝑠 ) |
| 375 |
374
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) ∧ 𝑡 = ( 𝑋 + 𝑠 ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) = ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) |
| 376 |
375
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) ∧ 𝑡 = ( 𝑋 + 𝑠 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) |
| 377 |
362 376
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) ∧ 𝑡 = ( 𝑋 + 𝑠 ) ) → ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) |
| 378 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ∈ ℝ ) |
| 379 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℝ ) |
| 380 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 381 |
380 371
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 382 |
36
|
recnd |
⊢ ( 𝜑 → - π ∈ ℂ ) |
| 383 |
94 382
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( - π − 𝑋 ) ) = - π ) |
| 384 |
383
|
eqcomd |
⊢ ( 𝜑 → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
| 385 |
384
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π = ( 𝑋 + ( - π − 𝑋 ) ) ) |
| 386 |
|
elicc2 |
⊢ ( ( ( - π − 𝑋 ) ∈ ℝ ∧ ( π − 𝑋 ) ∈ ℝ ) → ( 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑠 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( π − 𝑋 ) ) ) ) |
| 387 |
366 368 386
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ↔ ( 𝑠 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( π − 𝑋 ) ) ) ) |
| 388 |
369 387
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑠 ∈ ℝ ∧ ( - π − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( π − 𝑋 ) ) ) |
| 389 |
388
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( - π − 𝑋 ) ≤ 𝑠 ) |
| 390 |
366 371 380 389
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( - π − 𝑋 ) ) ≤ ( 𝑋 + 𝑠 ) ) |
| 391 |
385 390
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → - π ≤ ( 𝑋 + 𝑠 ) ) |
| 392 |
388
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝑠 ≤ ( π − 𝑋 ) ) |
| 393 |
371 368 380 392
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ≤ ( 𝑋 + ( π − 𝑋 ) ) ) |
| 394 |
|
picn |
⊢ π ∈ ℂ |
| 395 |
394
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → π ∈ ℂ ) |
| 396 |
364 395
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + ( π − 𝑋 ) ) = π ) |
| 397 |
393 396
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ≤ π ) |
| 398 |
378 379 381 391 397
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( - π [,] π ) ) |
| 399 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 400 |
399 398
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 401 |
371 111
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ∈ ℂ ) |
| 402 |
400 401
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ∈ ℂ ) |
| 403 |
359 377 398 402
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ) → ( 𝐺 ‘ ( 𝑋 + 𝑠 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) |
| 404 |
403
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐺 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) d 𝑠 ) |
| 405 |
29 358 404
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 ) · ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡 − 𝑋 ) ) ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) d 𝑠 ) |