| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem101.d | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑠  ∈  ℝ  ↦  if ( ( 𝑠  mod  ( 2  ·  π ) )  =  0 ,  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  π ) ) ,  ( ( sin ‘ ( ( 𝑛  +  ( 1  /  2 ) )  ·  𝑠 ) )  /  ( ( 2  ·  π )  ·  ( sin ‘ ( 𝑠  /  2 ) ) ) ) ) ) ) | 
						
							| 2 |  | fourierdlem101.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑚 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 3 |  | fourierdlem101.g | ⊢ 𝐺  =  ( 𝑡  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 4 |  | fourierdlem101.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 5 |  | fourierdlem101.6 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | fourierdlem101.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem101.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 8 |  | fourierdlem101.f | ⊢ ( 𝜑  →  𝐹 : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 9 |  | fourierdlem101.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 10 |  | fourierdlem101.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 11 |  | fourierdlem101.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑡  ∈  ( - π [,] π ) ) | 
						
							| 13 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑁  ∈  ℕ ) | 
						
							| 15 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 16 | 15 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 17 |  | eliccre | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑡  ∈  ℝ ) | 
						
							| 18 | 16 15 17 | mp3an12 | ⊢ ( 𝑡  ∈  ( - π [,] π )  →  𝑡  ∈  ℝ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑡  ∈  ℝ ) | 
						
							| 20 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  𝑋  ∈  ℝ ) | 
						
							| 21 | 19 20 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 22 | 1 | dirkerre | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑡  −  𝑋 )  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 23 | 14 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 24 | 23 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℂ ) | 
						
							| 25 | 13 24 | mulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ℂ ) | 
						
							| 26 | 3 | fvmpt2 | ⊢ ( ( 𝑡  ∈  ( - π [,] π )  ∧  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ℂ )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 27 | 12 25 26 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( - π [,] π ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 29 | 28 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 )  =  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 32 | 31 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  −  𝑋 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 33 | 25 3 | fmptd | ⊢ ( 𝜑  →  𝐺 : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 34 | 3 | reseq1i | ⊢ ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑡  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 35 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 36 | 16 | a1i | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 37 | 36 | rexrd | ⊢ ( 𝜑  →  - π  ∈  ℝ* ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  - π  ∈  ℝ* ) | 
						
							| 39 | 15 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 40 | 39 | rexrd | ⊢ ( 𝜑  →  π  ∈  ℝ* ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  π  ∈  ℝ* ) | 
						
							| 42 | 2 5 4 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 45 | 38 41 43 44 | fourierdlem8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 46 | 35 45 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( - π [,] π ) ) | 
						
							| 47 | 46 | resmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) ) | 
						
							| 48 | 34 47 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) ) | 
						
							| 49 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 50 | 49 46 | feqresmpt | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 51 | 50 9 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑡 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 52 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) )  →  𝑠  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) ) | 
						
							| 54 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ) | 
						
							| 55 |  | oveq1 | ⊢ ( 𝑡  =  𝑟  →  ( 𝑡  −  𝑋 )  =  ( 𝑟  −  𝑋 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑡  =  𝑟 )  →  ( 𝑡  −  𝑋 )  =  ( 𝑟  −  𝑋 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 58 |  | elioore | ⊢ ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑟  ∈  ℝ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑟  ∈  ℝ ) | 
						
							| 60 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 61 | 59 60 | resubcld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑟  −  𝑋 )  ∈  ℝ ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑟  −  𝑋 )  ∈  ℝ ) | 
						
							| 63 | 54 56 57 62 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 )  =  ( 𝑟  −  𝑋 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 )  =  ( 𝑟  −  𝑋 ) ) | 
						
							| 65 | 53 64 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) )  →  𝑠  =  ( 𝑟  −  𝑋 ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) ) | 
						
							| 67 |  | elioore | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 69 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 70 | 68 69 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 71 | 70 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 72 |  | eqid | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) | 
						
							| 73 | 71 72 | fmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 74 | 73 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 )  ∈  ℝ ) | 
						
							| 75 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 76 | 1 | dirkerre | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑟  −  𝑋 )  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 77 | 75 62 76 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 78 | 52 66 74 77 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) ) | 
						
							| 79 | 78 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) )  =  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) ) ) | 
						
							| 80 | 79 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) )  =  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) ) ) ) | 
						
							| 81 | 55 | fveq2d | ⊢ ( 𝑡  =  𝑟  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) ) | 
						
							| 82 | 81 | cbvmptv | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) ) | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑟  −  𝑋 ) ) ) ) | 
						
							| 84 | 1 | dirkerre | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 85 | 6 84 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 86 |  | eqid | ⊢ ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) | 
						
							| 87 | 85 86 | fmptd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ ) | 
						
							| 89 |  | fcompt | ⊢ ( ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℝ  ∧  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ )  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∘  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) )  =  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) ) ) ) | 
						
							| 90 | 88 73 89 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∘  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) )  =  ( 𝑟  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ‘ ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ‘ 𝑟 ) ) ) ) | 
						
							| 91 | 80 83 90 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∘  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 92 |  | eqid | ⊢ ( 𝑡  ∈  ℂ  ↦  ( 𝑡  −  𝑋 ) )  =  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  −  𝑋 ) ) | 
						
							| 93 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℂ )  →  𝑡  ∈  ℂ ) | 
						
							| 94 | 7 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℂ )  →  𝑋  ∈  ℂ ) | 
						
							| 96 | 93 95 | negsubd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℂ )  →  ( 𝑡  +  - 𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 97 | 96 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℂ )  →  ( 𝑡  −  𝑋 )  =  ( 𝑡  +  - 𝑋 ) ) | 
						
							| 98 | 97 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  −  𝑋 ) )  =  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  +  - 𝑋 ) ) ) | 
						
							| 99 | 94 | negcld | ⊢ ( 𝜑  →  - 𝑋  ∈  ℂ ) | 
						
							| 100 |  | eqid | ⊢ ( 𝑡  ∈  ℂ  ↦  ( 𝑡  +  - 𝑋 ) )  =  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  +  - 𝑋 ) ) | 
						
							| 101 | 100 | addccncf | ⊢ ( - 𝑋  ∈  ℂ  →  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  +  - 𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 102 | 99 101 | syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  +  - 𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 103 | 98 102 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  −  𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ℂ  ↦  ( 𝑡  −  𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 105 |  | ioossre | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 106 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 107 | 105 106 | sstri | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ | 
						
							| 108 | 107 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 109 | 106 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 110 | 92 104 108 109 71 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℝ ) ) | 
						
							| 111 | 85 | recnd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 112 | 111 86 | fmptd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) | 
						
							| 113 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 114 | 1 | dirkerf | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 115 | 6 114 | syl | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 116 | 115 | feqmptd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑁 )  =  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) | 
						
							| 117 | 1 | dirkercncf | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐷 ‘ 𝑁 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 118 | 6 117 | syl | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑁 )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 119 | 116 118 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 120 |  | cncfcdm | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℝ ) )  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℂ )  ↔  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) ) | 
						
							| 121 | 113 119 120 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℂ )  ↔  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) : ℝ ⟶ ℂ ) ) | 
						
							| 122 | 112 121 | mpbird | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 124 | 110 123 | cncfco | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑠  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∘  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 125 | 91 124 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 126 | 51 125 | mulcncf | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 127 | 48 126 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 128 |  | cncff | ⊢ ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 129 | 9 128 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 130 | 115 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 131 |  | elioore | ⊢ ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 133 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 134 | 132 133 | resubcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑠  −  𝑋 )  ∈  ℝ ) | 
						
							| 135 | 130 134 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 136 | 135 | recnd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  ∈  ℂ ) | 
						
							| 137 |  | eqid | ⊢ ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  =  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) | 
						
							| 138 | 136 137 | fmptd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 140 |  | eqid | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 141 |  | oveq1 | ⊢ ( 𝑡  =  ( 𝑄 ‘ 𝑖 )  →  ( 𝑡  −  𝑋 )  =  ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) | 
						
							| 142 | 141 | fveq2d | ⊢ ( 𝑡  =  ( 𝑄 ‘ 𝑖 )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ) | 
						
							| 143 | 142 | eqcomd | ⊢ ( 𝑡  =  ( 𝑄 ‘ 𝑖 )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 145 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  =  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ) | 
						
							| 146 |  | oveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  −  𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 147 | 146 | fveq2d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  ∧  𝑠  =  𝑡 )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 149 |  | velsn | ⊢ ( 𝑡  ∈  { ( 𝑄 ‘ 𝑖 ) }  ↔  𝑡  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 150 | 149 | notbii | ⊢ ( ¬  𝑡  ∈  { ( 𝑄 ‘ 𝑖 ) }  ↔  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 151 |  | elunnel2 | ⊢ ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ∧  ¬  𝑡  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 152 | 150 151 | sylan2br | ⊢ ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 153 | 152 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 154 | 115 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 155 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 156 | 18 | ssriv | ⊢ ( - π [,] π )  ⊆  ℝ | 
						
							| 157 |  | fzossfz | ⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 158 | 157 44 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 159 | 43 158 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( - π [,] π ) ) | 
						
							| 160 | 156 159 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 162 | 155 161 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  ∈  ℝ ) | 
						
							| 163 | 162 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  ∈  ℝ ) | 
						
							| 164 | 153 67 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  𝑡  ∈  ℝ ) | 
						
							| 165 | 163 164 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑡  ∈  ℝ ) | 
						
							| 166 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑋  ∈  ℝ ) | 
						
							| 167 | 165 166 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 168 | 154 167 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 170 | 145 148 153 169 | fvmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ 𝑖 ) )  →  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 171 | 144 170 | ifeqda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 172 | 171 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 173 | 115 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 174 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 175 |  | elun | ⊢ ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↔  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 176 | 174 175 | sylib | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 177 | 176 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 178 |  | elsni | ⊢ ( 𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) }  →  𝑠  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 179 | 178 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  𝑠  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 180 | 160 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 181 | 179 180 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  𝑠  ∈  ℝ ) | 
						
							| 182 | 181 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) }  →  𝑠  ∈  ℝ ) ) | 
						
							| 183 | 182 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) }  →  𝑠  ∈  ℝ ) ) | 
						
							| 184 |  | pm3.44 | ⊢ ( ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑠  ∈  ℝ )  ∧  ( 𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) }  →  𝑠  ∈  ℝ ) )  →  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  𝑠  ∈  ℝ ) ) | 
						
							| 185 | 131 183 184 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑠  ∈  { ( 𝑄 ‘ 𝑖 ) } )  →  𝑠  ∈  ℝ ) ) | 
						
							| 186 | 177 185 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑠  ∈  ℝ ) | 
						
							| 187 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑋  ∈  ℝ ) | 
						
							| 188 | 186 187 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑠  −  𝑋 )  ∈  ℝ ) | 
						
							| 189 |  | eqid | ⊢ ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) )  =  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) | 
						
							| 190 | 188 189 | fmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℝ ) | 
						
							| 191 |  | fcompt | ⊢ ( ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ  ∧  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℝ )  →  ( ( 𝐷 ‘ 𝑁 )  ∘  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 192 | 173 190 191 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑁 )  ∘  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 193 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) )  =  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ) | 
						
							| 194 | 146 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  𝑠  =  𝑡 )  →  ( 𝑠  −  𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 195 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 196 | 193 194 195 167 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ‘ 𝑡 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 197 | 196 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 198 | 197 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 199 | 192 198 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐷 ‘ 𝑁 )  ∘  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) ) ) | 
						
							| 200 |  | eqid | ⊢ ( 𝑠  ∈  ℂ  ↦  ( 𝑠  −  𝑋 ) )  =  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  −  𝑋 ) ) | 
						
							| 201 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℂ )  →  𝑠  ∈  ℂ ) | 
						
							| 202 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℂ )  →  𝑋  ∈  ℂ ) | 
						
							| 203 | 201 202 | negsubd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℂ )  →  ( 𝑠  +  - 𝑋 )  =  ( 𝑠  −  𝑋 ) ) | 
						
							| 204 | 203 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℂ )  →  ( 𝑠  −  𝑋 )  =  ( 𝑠  +  - 𝑋 ) ) | 
						
							| 205 | 204 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  −  𝑋 ) )  =  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  +  - 𝑋 ) ) ) | 
						
							| 206 |  | eqid | ⊢ ( 𝑠  ∈  ℂ  ↦  ( 𝑠  +  - 𝑋 ) )  =  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  +  - 𝑋 ) ) | 
						
							| 207 | 206 | addccncf | ⊢ ( - 𝑋  ∈  ℂ  →  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  +  - 𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 208 | 99 207 | syl | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  +  - 𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 209 | 205 208 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  −  𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ℂ  ↦  ( 𝑠  −  𝑋 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 211 | 160 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 212 | 211 | snssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { ( 𝑄 ‘ 𝑖 ) }  ⊆  ℂ ) | 
						
							| 213 | 108 212 | unssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ⊆  ℂ ) | 
						
							| 214 | 200 210 213 109 188 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) )  ∈  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℝ ) ) | 
						
							| 215 | 116 122 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑁 )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 216 | 215 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐷 ‘ 𝑁 )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 217 | 214 216 | cncfco | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑁 )  ∘  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) )  ∈  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ ) ) | 
						
							| 218 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 219 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 220 | 218 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 221 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 222 | 221 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 223 | 220 222 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 224 | 223 | eqcomi | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 225 | 218 219 224 | cncfcn | ⊢ ( ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 226 | 213 113 225 | sylancl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 227 | 217 226 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑁 )  ∘  ( 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( 𝑠  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 228 | 199 227 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 229 | 218 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 230 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) ) | 
						
							| 231 | 229 213 230 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) ) | 
						
							| 232 |  | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  ∧  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 233 | 231 229 232 | sylancl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 234 | 228 233 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) | 
						
							| 235 | 234 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) | 
						
							| 236 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 237 |  | elsng | ⊢ ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ  →  ( ( 𝑄 ‘ 𝑖 )  ∈  { ( 𝑄 ‘ 𝑖 ) }  ↔  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 238 | 160 237 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  ∈  { ( 𝑄 ‘ 𝑖 ) }  ↔  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 239 | 236 238 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  { ( 𝑄 ‘ 𝑖 ) } ) | 
						
							| 240 | 239 | olcd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  ( 𝑄 ‘ 𝑖 )  ∈  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 241 |  | elun | ⊢ ( ( 𝑄 ‘ 𝑖 )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↔  ( ( 𝑄 ‘ 𝑖 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  ( 𝑄 ‘ 𝑖 )  ∈  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 242 | 240 241 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ) | 
						
							| 243 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑄 ‘ 𝑖 )  →  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  =  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 244 | 243 | eleq2d | ⊢ ( 𝑠  =  ( 𝑄 ‘ 𝑖 )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  ↔  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) ) | 
						
							| 245 | 244 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  ∧  ( 𝑄 ‘ 𝑖 )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 246 | 235 242 245 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 247 | 172 246 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 248 |  | eqid | ⊢ ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 249 | 219 218 248 139 108 211 | ellimc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ↔  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ 𝑖 ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ 𝑖 ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ 𝑖 ) ) ) ) | 
						
							| 250 | 247 249 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 251 | 129 139 140 10 250 | mullimcf | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) )  ∈  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 252 |  | fvres | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 253 | 252 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 254 | 253 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 255 | 254 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 256 | 255 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 257 | 251 256 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) )  ∈  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 258 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  =  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ) | 
						
							| 259 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  𝑡 )  →  𝑠  =  𝑡 ) | 
						
							| 260 | 259 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  𝑡 )  →  ( 𝑠  −  𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 261 | 260 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑠  =  𝑡 )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 262 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 263 | 115 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 264 | 263 71 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 265 | 258 261 262 264 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 266 | 265 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 267 | 266 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) ) | 
						
							| 268 | 267 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 269 | 257 268 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) )  ∈  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 270 | 48 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  =  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 271 | 270 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 272 | 269 271 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑅  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ 𝑖 )  −  𝑋 ) ) )  ∈  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 273 |  | iftrue | ⊢ ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ) | 
						
							| 274 |  | oveq1 | ⊢ ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ( 𝑡  −  𝑋 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) | 
						
							| 275 | 274 | eqcomd | ⊢ ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 )  =  ( 𝑡  −  𝑋 ) ) | 
						
							| 276 | 275 | fveq2d | ⊢ ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 277 | 273 276 | eqtrd | ⊢ ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 278 | 277 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 279 |  | iffalse | ⊢ ( ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) | 
						
							| 280 | 279 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) | 
						
							| 281 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  =  ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ) | 
						
							| 282 | 147 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑠  =  𝑡 )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 283 |  | elun | ⊢ ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↔  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 284 | 283 | biimpi | ⊢ ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 285 | 284 | orcomd | ⊢ ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  →  ( 𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ∨  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 286 | 285 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ∨  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 287 |  | velsn | ⊢ ( 𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ↔  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 288 | 287 | notbii | ⊢ ( ¬  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ↔  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 289 | 288 | biimpri | ⊢ ( ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ¬  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 290 | 289 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ¬  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 291 |  | pm2.53 | ⊢ ( ( 𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ∨  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ¬  𝑡  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 292 | 286 290 291 | sylc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 293 | 173 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 294 | 292 67 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 295 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 296 | 294 295 | resubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 297 | 293 296 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 298 | 281 282 292 297 | fvmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 299 | 280 298 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ¬  𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 300 | 278 299 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 301 | 300 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 302 |  | eqid | ⊢ ( 𝑡  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( 𝑡  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) | 
						
							| 303 | 106 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 304 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  𝑡  ∈  ℝ ) | 
						
							| 305 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  𝑋  ∈  ℝ ) | 
						
							| 306 | 304 305 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ℝ )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 307 | 92 103 303 303 306 | cncfmptssg | ⊢ ( 𝜑  →  ( 𝑡  ∈  ℝ  ↦  ( 𝑡  −  𝑋 ) )  ∈  ( ℝ –cn→ ℝ ) ) | 
						
							| 308 | 307 215 | cncfcompt | ⊢ ( 𝜑  →  ( 𝑡  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 309 | 308 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ℝ  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 310 | 105 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 311 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 312 | 311 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 313 | 43 312 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( - π [,] π ) ) | 
						
							| 314 | 156 313 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 315 | 314 | snssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ⊆  ℝ ) | 
						
							| 316 | 310 315 | unssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ⊆  ℝ ) | 
						
							| 317 | 113 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 318 | 173 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) | 
						
							| 319 | 316 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  𝑡  ∈  ℝ ) | 
						
							| 320 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  𝑋  ∈  ℝ ) | 
						
							| 321 | 319 320 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( 𝑡  −  𝑋 )  ∈  ℝ ) | 
						
							| 322 | 318 321 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 323 | 322 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  ∈  ℂ ) | 
						
							| 324 | 302 309 316 317 323 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) –cn→ ℂ ) ) | 
						
							| 325 | 156 106 | sstri | ⊢ ( - π [,] π )  ⊆  ℂ | 
						
							| 326 | 325 313 | sselid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℂ ) | 
						
							| 327 | 326 | snssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ⊆  ℂ ) | 
						
							| 328 | 108 327 | unssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ⊆  ℂ ) | 
						
							| 329 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 330 | 218 329 224 | cncfcn | ⊢ ( ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 331 | 328 113 330 | sylancl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 332 | 324 331 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 333 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 334 | 229 328 333 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 335 |  | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∈  ( TopOn ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  ∧  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 336 | 334 229 335 | sylancl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) ) | 
						
							| 337 | 332 336 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) : ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ⟶ ℂ  ∧  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) ) | 
						
							| 338 | 337 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 ) ) | 
						
							| 339 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 340 |  | elsng | ⊢ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ↔  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 341 | 314 340 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) }  ↔  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 342 | 339 341 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 343 | 342 | olcd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 344 |  | elun | ⊢ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↔  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∨  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 345 | 343 344 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 346 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  =  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 347 | 346 | eleq2d | ⊢ ( 𝑠  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  ↔  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 348 | 347 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ 𝑠 )  ∧  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 349 | 338 345 348 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 350 | 301 349 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 351 |  | eqid | ⊢ ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 352 | 329 218 351 139 108 326 | ellimc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( 𝑡  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } )  ↦  if ( 𝑡  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) ,  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  CnP  ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 353 | 350 352 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) )  ∈  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 354 | 129 139 140 11 353 | mullimcf | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐿  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) )  ∈  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 355 | 267 255 48 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  =  ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 356 | 355 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  ·  ( ( 𝑠  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑠  −  𝑋 ) ) ) ‘ 𝑡 ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 357 | 354 356 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐿  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  −  𝑋 ) ) )  ∈  ( ( 𝐺  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 358 | 2 32 5 4 7 33 127 272 357 | fourierdlem93 | ⊢ ( 𝜑  →  ∫ ( - π [,] π ) ( 𝐺 ‘ 𝑡 )  d 𝑡  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ ( 𝑋  +  𝑠 ) )  d 𝑠 ) | 
						
							| 359 | 3 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝐺  =  ( 𝑡  ∈  ( - π [,] π )  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) ) | 
						
							| 360 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝑋  +  𝑠 )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) ) ) | 
						
							| 361 | 360 | oveq1d | ⊢ ( 𝑡  =  ( 𝑋  +  𝑠 )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 362 | 361 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  ∧  𝑡  =  ( 𝑋  +  𝑠 ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) ) ) | 
						
							| 363 |  | oveq1 | ⊢ ( 𝑡  =  ( 𝑋  +  𝑠 )  →  ( 𝑡  −  𝑋 )  =  ( ( 𝑋  +  𝑠 )  −  𝑋 ) ) | 
						
							| 364 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑋  ∈  ℂ ) | 
						
							| 365 | 36 7 | resubcld | ⊢ ( 𝜑  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 366 | 365 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( - π  −  𝑋 )  ∈  ℝ ) | 
						
							| 367 | 39 7 | resubcld | ⊢ ( 𝜑  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 368 | 367 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( π  −  𝑋 )  ∈  ℝ ) | 
						
							| 369 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ) | 
						
							| 370 |  | eliccre | ⊢ ( ( ( - π  −  𝑋 )  ∈  ℝ  ∧  ( π  −  𝑋 )  ∈  ℝ  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 371 | 366 368 369 370 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 372 | 371 | recnd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ∈  ℂ ) | 
						
							| 373 | 364 372 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝑋  +  𝑠 )  −  𝑋 )  =  𝑠 ) | 
						
							| 374 | 363 373 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  ∧  𝑡  =  ( 𝑋  +  𝑠 ) )  →  ( 𝑡  −  𝑋 )  =  𝑠 ) | 
						
							| 375 | 374 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  ∧  𝑡  =  ( 𝑋  +  𝑠 ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) )  =  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) | 
						
							| 376 | 375 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  ∧  𝑡  =  ( 𝑋  +  𝑠 ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) | 
						
							| 377 | 362 376 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  ∧  𝑡  =  ( 𝑋  +  𝑠 ) )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) | 
						
							| 378 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  ∈  ℝ ) | 
						
							| 379 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  π  ∈  ℝ ) | 
						
							| 380 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 381 | 380 371 | readdcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ℝ ) | 
						
							| 382 | 36 | recnd | ⊢ ( 𝜑  →  - π  ∈  ℂ ) | 
						
							| 383 | 94 382 | pncan3d | ⊢ ( 𝜑  →  ( 𝑋  +  ( - π  −  𝑋 ) )  =  - π ) | 
						
							| 384 | 383 | eqcomd | ⊢ ( 𝜑  →  - π  =  ( 𝑋  +  ( - π  −  𝑋 ) ) ) | 
						
							| 385 | 384 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  =  ( 𝑋  +  ( - π  −  𝑋 ) ) ) | 
						
							| 386 |  | elicc2 | ⊢ ( ( ( - π  −  𝑋 )  ∈  ℝ  ∧  ( π  −  𝑋 )  ∈  ℝ )  →  ( 𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) )  ↔  ( 𝑠  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑠  ∧  𝑠  ≤  ( π  −  𝑋 ) ) ) ) | 
						
							| 387 | 366 368 386 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) )  ↔  ( 𝑠  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑠  ∧  𝑠  ≤  ( π  −  𝑋 ) ) ) ) | 
						
							| 388 | 369 387 | mpbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑠  ∈  ℝ  ∧  ( - π  −  𝑋 )  ≤  𝑠  ∧  𝑠  ≤  ( π  −  𝑋 ) ) ) | 
						
							| 389 | 388 | simp2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( - π  −  𝑋 )  ≤  𝑠 ) | 
						
							| 390 | 366 371 380 389 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  ( - π  −  𝑋 ) )  ≤  ( 𝑋  +  𝑠 ) ) | 
						
							| 391 | 385 390 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  - π  ≤  ( 𝑋  +  𝑠 ) ) | 
						
							| 392 | 388 | simp3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝑠  ≤  ( π  −  𝑋 ) ) | 
						
							| 393 | 371 368 380 392 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑠 )  ≤  ( 𝑋  +  ( π  −  𝑋 ) ) ) | 
						
							| 394 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 395 | 394 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  π  ∈  ℂ ) | 
						
							| 396 | 364 395 | pncan3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  ( π  −  𝑋 ) )  =  π ) | 
						
							| 397 | 393 396 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑠 )  ≤  π ) | 
						
							| 398 | 378 379 381 391 397 | eliccd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝑋  +  𝑠 )  ∈  ( - π [,] π ) ) | 
						
							| 399 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  𝐹 : ( - π [,] π ) ⟶ ℂ ) | 
						
							| 400 | 399 398 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ∈  ℂ ) | 
						
							| 401 | 371 111 | syldan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 )  ∈  ℂ ) | 
						
							| 402 | 400 401 | mulcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  ∈  ℂ ) | 
						
							| 403 | 359 377 398 402 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) )  →  ( 𝐺 ‘ ( 𝑋  +  𝑠 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) ) ) | 
						
							| 404 | 403 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( 𝐺 ‘ ( 𝑋  +  𝑠 ) )  d 𝑠  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  d 𝑠 ) | 
						
							| 405 | 29 358 404 | 3eqtrd | ⊢ ( 𝜑  →  ∫ ( - π [,] π ) ( ( 𝐹 ‘ 𝑡 )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ ( 𝑡  −  𝑋 ) ) )  d 𝑡  =  ∫ ( ( - π  −  𝑋 ) [,] ( π  −  𝑋 ) ) ( ( 𝐹 ‘ ( 𝑋  +  𝑠 ) )  ·  ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑠 ) )  d 𝑠 ) |