| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem102.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem102.t |
⊢ 𝑇 = ( 2 · π ) |
| 3 |
|
fourierdlem102.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
|
fourierdlem102.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
| 5 |
|
fourierdlem102.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
| 6 |
|
fourierdlem102.gcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
| 7 |
|
fourierdlem102.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 8 |
|
fourierdlem102.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 9 |
|
fourierdlem102.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 10 |
|
fourierdlem102.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 11 |
|
fourierdlem102.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 12 |
|
fourierdlem102.h |
⊢ 𝐻 = ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
| 13 |
|
fourierdlem102.m |
⊢ 𝑀 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
| 14 |
|
fourierdlem102.q |
⊢ 𝑄 = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
| 15 |
|
2z |
⊢ 2 ∈ ℤ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 17 |
|
tpfi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ) |
| 19 |
|
pire |
⊢ π ∈ ℝ |
| 20 |
19
|
renegcli |
⊢ - π ∈ ℝ |
| 21 |
20
|
rexri |
⊢ - π ∈ ℝ* |
| 22 |
19
|
rexri |
⊢ π ∈ ℝ* |
| 23 |
|
negpilt0 |
⊢ - π < 0 |
| 24 |
|
pipos |
⊢ 0 < π |
| 25 |
|
0re |
⊢ 0 ∈ ℝ |
| 26 |
20 25 19
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
| 27 |
23 24 26
|
mp2an |
⊢ - π < π |
| 28 |
20 19 27
|
ltleii |
⊢ - π ≤ π |
| 29 |
|
prunioo |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) ) |
| 30 |
21 22 28 29
|
mp3an |
⊢ ( ( - π (,) π ) ∪ { - π , π } ) = ( - π [,] π ) |
| 31 |
30
|
difeq1i |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( - π [,] π ) ∖ dom 𝐺 ) |
| 32 |
|
difundir |
⊢ ( ( ( - π (,) π ) ∪ { - π , π } ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
| 33 |
31 32
|
eqtr3i |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) = ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) |
| 34 |
|
prfi |
⊢ { - π , π } ∈ Fin |
| 35 |
|
diffi |
⊢ ( { - π , π } ∈ Fin → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
| 36 |
34 35
|
mp1i |
⊢ ( 𝜑 → ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) |
| 37 |
|
unfi |
⊢ ( ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ∧ ( { - π , π } ∖ dom 𝐺 ) ∈ Fin ) → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
| 38 |
5 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ( ( - π (,) π ) ∖ dom 𝐺 ) ∪ ( { - π , π } ∖ dom 𝐺 ) ) ∈ Fin ) |
| 39 |
33 38
|
eqeltrid |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) |
| 40 |
|
unfi |
⊢ ( ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ Fin ∧ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ Fin ) → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
| 41 |
18 39 40
|
syl2anc |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ Fin ) |
| 42 |
12 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 43 |
|
hashcl |
⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 45 |
44
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 46 |
20 27
|
ltneii |
⊢ - π ≠ π |
| 47 |
|
hashprg |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) ) |
| 48 |
20 19 47
|
mp2an |
⊢ ( - π ≠ π ↔ ( ♯ ‘ { - π , π } ) = 2 ) |
| 49 |
46 48
|
mpbi |
⊢ ( ♯ ‘ { - π , π } ) = 2 |
| 50 |
17
|
elexi |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∈ V |
| 51 |
|
ovex |
⊢ ( - π [,] π ) ∈ V |
| 52 |
|
difexg |
⊢ ( ( - π [,] π ) ∈ V → ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V ) |
| 53 |
51 52
|
ax-mp |
⊢ ( ( - π [,] π ) ∖ dom 𝐺 ) ∈ V |
| 54 |
50 53
|
unex |
⊢ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ∈ V |
| 55 |
12 54
|
eqeltri |
⊢ 𝐻 ∈ V |
| 56 |
|
negex |
⊢ - π ∈ V |
| 57 |
56
|
tpid1 |
⊢ - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
| 58 |
19
|
elexi |
⊢ π ∈ V |
| 59 |
58
|
tpid2 |
⊢ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
| 60 |
|
prssi |
⊢ ( ( - π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ∧ π ∈ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) → { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } ) |
| 61 |
57 59 60
|
mp2an |
⊢ { - π , π } ⊆ { - π , π , ( 𝐸 ‘ 𝑋 ) } |
| 62 |
|
ssun1 |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
| 63 |
62 12
|
sseqtrri |
⊢ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ 𝐻 |
| 64 |
61 63
|
sstri |
⊢ { - π , π } ⊆ 𝐻 |
| 65 |
|
hashss |
⊢ ( ( 𝐻 ∈ V ∧ { - π , π } ⊆ 𝐻 ) → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
| 66 |
55 64 65
|
mp2an |
⊢ ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { - π , π } ) ≤ ( ♯ ‘ 𝐻 ) ) |
| 68 |
49 67
|
eqbrtrrid |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐻 ) ) |
| 69 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 2 ≤ ( ♯ ‘ 𝐻 ) ) ) |
| 70 |
16 45 68 69
|
syl3anbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 71 |
|
uz2m1nn |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) − 1 ) ∈ ℕ ) |
| 73 |
13 72
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 74 |
20
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 75 |
19
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 76 |
|
negpitopissre |
⊢ ( - π (,] π ) ⊆ ℝ |
| 77 |
27
|
a1i |
⊢ ( 𝜑 → - π < π ) |
| 78 |
|
picn |
⊢ π ∈ ℂ |
| 79 |
78
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
| 80 |
78 78
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
| 81 |
79 2 80
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
| 82 |
74 75 77 81 11
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( - π (,] π ) ) |
| 83 |
82 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π (,] π ) ) |
| 84 |
76 83
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
| 85 |
74 75 84
|
3jca |
⊢ ( 𝜑 → ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ) |
| 86 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑋 ) ∈ V |
| 87 |
56 58 86
|
tpss |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) ↔ { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
| 88 |
85 87
|
sylib |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ℝ ) |
| 89 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
| 90 |
20 19 89
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
| 91 |
|
ssdifss |
⊢ ( ( - π [,] π ) ⊆ ℝ → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
| 92 |
90 91
|
mp1i |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ℝ ) |
| 93 |
88 92
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ℝ ) |
| 94 |
12 93
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
| 95 |
42 94 14 13
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
| 96 |
|
isof1o |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 ) |
| 97 |
|
f1of |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
| 98 |
95 96 97
|
3syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
| 99 |
98 94
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 100 |
|
reex |
⊢ ℝ ∈ V |
| 101 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 102 |
100 101
|
elmap |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 103 |
99 102
|
sylibr |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 104 |
|
fveq2 |
⊢ ( 0 = 𝑖 → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 105 |
104
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 106 |
99
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 107 |
106
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 109 |
105 108
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 110 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
| 111 |
110
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
| 112 |
111
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ∈ ℝ ) |
| 113 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑖 ) |
| 114 |
113
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 ≤ 𝑖 ) |
| 115 |
|
neqne |
⊢ ( ¬ 0 = 𝑖 → 0 ≠ 𝑖 ) |
| 116 |
115
|
necomd |
⊢ ( ¬ 0 = 𝑖 → 𝑖 ≠ 0 ) |
| 117 |
116
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 𝑖 ≠ 0 ) |
| 118 |
112 114 117
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → 0 < 𝑖 ) |
| 119 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 120 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 121 |
119 120
|
sseqtri |
⊢ ℕ ⊆ ( ℤ≥ ‘ 0 ) |
| 122 |
121 73
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 123 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 124 |
122 123
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 125 |
98 124
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ 𝐻 ) |
| 126 |
94 125
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 128 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 0 < 𝑖 ) |
| 130 |
95
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
| 131 |
124
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
| 132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) |
| 133 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 0 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
| 134 |
130 132 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 0 < 𝑖 ↔ ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) ) |
| 135 |
129 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) < ( 𝑄 ‘ 𝑖 ) ) |
| 136 |
127 128 135
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 0 < 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 137 |
118 136
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 0 = 𝑖 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 138 |
109 137
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 140 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 𝑖 ) = - π ) |
| 141 |
139 140
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ≤ - π ) |
| 142 |
74
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
| 143 |
75
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
| 144 |
|
lbicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → - π ∈ ( - π [,] π ) ) |
| 145 |
21 22 28 144
|
mp3an |
⊢ - π ∈ ( - π [,] π ) |
| 146 |
145
|
a1i |
⊢ ( 𝜑 → - π ∈ ( - π [,] π ) ) |
| 147 |
|
ubicc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π ≤ π ) → π ∈ ( - π [,] π ) ) |
| 148 |
21 22 28 147
|
mp3an |
⊢ π ∈ ( - π [,] π ) |
| 149 |
148
|
a1i |
⊢ ( 𝜑 → π ∈ ( - π [,] π ) ) |
| 150 |
|
iocssicc |
⊢ ( - π (,] π ) ⊆ ( - π [,] π ) |
| 151 |
150 83
|
sselid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) |
| 152 |
|
tpssi |
⊢ ( ( - π ∈ ( - π [,] π ) ∧ π ∈ ( - π [,] π ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( - π [,] π ) ) → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
| 153 |
146 149 151 152
|
syl3anc |
⊢ ( 𝜑 → { - π , π , ( 𝐸 ‘ 𝑋 ) } ⊆ ( - π [,] π ) ) |
| 154 |
|
difssd |
⊢ ( 𝜑 → ( ( - π [,] π ) ∖ dom 𝐺 ) ⊆ ( - π [,] π ) ) |
| 155 |
153 154
|
unssd |
⊢ ( 𝜑 → ( { - π , π , ( 𝐸 ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ⊆ ( - π [,] π ) ) |
| 156 |
12 155
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ( - π [,] π ) ) |
| 157 |
156 125
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) |
| 158 |
|
iccgelb |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 0 ) ∈ ( - π [,] π ) ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
| 159 |
142 143 157 158
|
syl3anc |
⊢ ( 𝜑 → - π ≤ ( 𝑄 ‘ 0 ) ) |
| 160 |
159
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ≤ ( 𝑄 ‘ 0 ) ) |
| 161 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 162 |
20
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → - π ∈ ℝ ) |
| 163 |
161 162
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( ( 𝑄 ‘ 0 ) = - π ↔ ( ( 𝑄 ‘ 0 ) ≤ - π ∧ - π ≤ ( 𝑄 ‘ 0 ) ) ) ) |
| 164 |
141 160 163
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ( 𝑄 ‘ 𝑖 ) = - π ) → ( 𝑄 ‘ 0 ) = - π ) |
| 165 |
63 57
|
sselii |
⊢ - π ∈ 𝐻 |
| 166 |
|
f1ofo |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –1-1-onto→ 𝐻 → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
| 167 |
96 166
|
syl |
⊢ ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) → 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 ) |
| 168 |
|
forn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) –onto→ 𝐻 → ran 𝑄 = 𝐻 ) |
| 169 |
95 167 168
|
3syl |
⊢ ( 𝜑 → ran 𝑄 = 𝐻 ) |
| 170 |
165 169
|
eleqtrrid |
⊢ ( 𝜑 → - π ∈ ran 𝑄 ) |
| 171 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 172 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
| 173 |
98 171 172
|
3syl |
⊢ ( 𝜑 → ( - π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) ) |
| 174 |
170 173
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = - π ) |
| 175 |
164 174
|
r19.29a |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
| 176 |
63 59
|
sselii |
⊢ π ∈ 𝐻 |
| 177 |
176 169
|
eleqtrrid |
⊢ ( 𝜑 → π ∈ ran 𝑄 ) |
| 178 |
|
fvelrnb |
⊢ ( 𝑄 Fn ( 0 ... 𝑀 ) → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
| 179 |
98 171 178
|
3syl |
⊢ ( 𝜑 → ( π ∈ ran 𝑄 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) ) |
| 180 |
177 179
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π ) |
| 181 |
98 156
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 182 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 183 |
122 182
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 184 |
181 183
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) |
| 185 |
|
iccleub |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑄 ‘ 𝑀 ) ∈ ( - π [,] π ) ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
| 186 |
142 143 184 185
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
| 187 |
186
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ≤ π ) |
| 188 |
|
id |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑖 ) = π ) |
| 189 |
188
|
eqcomd |
⊢ ( ( 𝑄 ‘ 𝑖 ) = π → π = ( 𝑄 ‘ 𝑖 ) ) |
| 190 |
189
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π = ( 𝑄 ‘ 𝑖 ) ) |
| 191 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 192 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
| 193 |
192
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
| 194 |
191 193
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 195 |
111
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ∈ ℝ ) |
| 196 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
| 197 |
196
|
zred |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
| 198 |
197
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ∈ ℝ ) |
| 199 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
| 200 |
199
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 ≤ 𝑀 ) |
| 201 |
|
neqne |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑖 ≠ 𝑀 ) |
| 202 |
201
|
necomd |
⊢ ( ¬ 𝑖 = 𝑀 → 𝑀 ≠ 𝑖 ) |
| 203 |
202
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑀 ≠ 𝑖 ) |
| 204 |
195 198 200 203
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → 𝑖 < 𝑀 ) |
| 205 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 206 |
90 184
|
sselid |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 207 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 208 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑖 < 𝑀 ) |
| 209 |
95
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
| 210 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 211 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 212 |
210 211
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
| 213 |
212
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) |
| 214 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑀 ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
| 215 |
209 213 214
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑖 < 𝑀 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) ) |
| 216 |
208 215
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ 𝑀 ) ) |
| 217 |
205 207 216
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 218 |
204 217
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 = 𝑀 ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 219 |
194 218
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 220 |
219
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 221 |
190 220
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 222 |
206
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 223 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → π ∈ ℝ ) |
| 224 |
222 223
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( ( 𝑄 ‘ 𝑀 ) = π ↔ ( ( 𝑄 ‘ 𝑀 ) ≤ π ∧ π ≤ ( 𝑄 ‘ 𝑀 ) ) ) ) |
| 225 |
187 221 224
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄 ‘ 𝑖 ) = π ) → ( 𝑄 ‘ 𝑀 ) = π ) |
| 226 |
225
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑖 ) = π → ( 𝑄 ‘ 𝑀 ) = π ) ) |
| 227 |
180 226
|
mpd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
| 228 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
| 229 |
228
|
zred |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℝ ) |
| 230 |
229
|
ltp1d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 < ( 𝑖 + 1 ) ) |
| 231 |
230
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 < ( 𝑖 + 1 ) ) |
| 232 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 233 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 234 |
232 233
|
jca |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
| 235 |
|
isorel |
⊢ ( ( 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 236 |
95 234 235
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 237 |
231 236
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 238 |
237
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 239 |
175 227 238
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 240 |
10
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 241 |
73 240
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 242 |
103 239 241
|
mpbir2and |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 243 |
4
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 244 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 245 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 246 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 247 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 248 |
244 245 246 247
|
fourierdlem27 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π (,) π ) ) |
| 249 |
248
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 250 |
243 249
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 251 |
6 10 73 242 12 169
|
fourierdlem38 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 252 |
250 251
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 253 |
250
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 254 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
| 255 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 256 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 257 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 Isom < , < ( ( 0 ... 𝑀 ) , 𝐻 ) ) |
| 258 |
257 96 97
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ 𝐻 ) |
| 259 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐸 ‘ 𝑋 ) ∈ ℝ ) |
| 260 |
257 167 168
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran 𝑄 = 𝐻 ) |
| 261 |
254 255 256 257 258 247 237 248 259 12 260
|
fourierdlem46 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ∧ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) ) |
| 262 |
261
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
| 263 |
253 262
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
| 264 |
250
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 265 |
261
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
| 266 |
264 265
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
| 267 |
1 2 3 9 10 73 242 252 263 266
|
fourierdlem94 |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ∧ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |