| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem102.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem102.t |
|- T = ( 2 x. _pi ) |
| 3 |
|
fourierdlem102.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fourierdlem102.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 5 |
|
fourierdlem102.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
| 6 |
|
fourierdlem102.gcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
| 7 |
|
fourierdlem102.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 8 |
|
fourierdlem102.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 9 |
|
fourierdlem102.x |
|- ( ph -> X e. RR ) |
| 10 |
|
fourierdlem102.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 11 |
|
fourierdlem102.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
| 12 |
|
fourierdlem102.h |
|- H = ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
| 13 |
|
fourierdlem102.m |
|- M = ( ( # ` H ) - 1 ) |
| 14 |
|
fourierdlem102.q |
|- Q = ( iota g g Isom < , < ( ( 0 ... M ) , H ) ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
15
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 17 |
|
tpfi |
|- { -u _pi , _pi , ( E ` X ) } e. Fin |
| 18 |
17
|
a1i |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } e. Fin ) |
| 19 |
|
pire |
|- _pi e. RR |
| 20 |
19
|
renegcli |
|- -u _pi e. RR |
| 21 |
20
|
rexri |
|- -u _pi e. RR* |
| 22 |
19
|
rexri |
|- _pi e. RR* |
| 23 |
|
negpilt0 |
|- -u _pi < 0 |
| 24 |
|
pipos |
|- 0 < _pi |
| 25 |
|
0re |
|- 0 e. RR |
| 26 |
20 25 19
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
| 27 |
23 24 26
|
mp2an |
|- -u _pi < _pi |
| 28 |
20 19 27
|
ltleii |
|- -u _pi <_ _pi |
| 29 |
|
prunioo |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) ) |
| 30 |
21 22 28 29
|
mp3an |
|- ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) |
| 31 |
30
|
difeq1i |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( -u _pi [,] _pi ) \ dom G ) |
| 32 |
|
difundir |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
| 33 |
31 32
|
eqtr3i |
|- ( ( -u _pi [,] _pi ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
| 34 |
|
prfi |
|- { -u _pi , _pi } e. Fin |
| 35 |
|
diffi |
|- ( { -u _pi , _pi } e. Fin -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
| 36 |
34 35
|
mp1i |
|- ( ph -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
| 37 |
|
unfi |
|- ( ( ( ( -u _pi (,) _pi ) \ dom G ) e. Fin /\ ( { -u _pi , _pi } \ dom G ) e. Fin ) -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
| 38 |
5 36 37
|
syl2anc |
|- ( ph -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
| 39 |
33 38
|
eqeltrid |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) |
| 40 |
|
unfi |
|- ( ( { -u _pi , _pi , ( E ` X ) } e. Fin /\ ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
| 41 |
18 39 40
|
syl2anc |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
| 42 |
12 41
|
eqeltrid |
|- ( ph -> H e. Fin ) |
| 43 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
| 44 |
42 43
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
| 45 |
44
|
nn0zd |
|- ( ph -> ( # ` H ) e. ZZ ) |
| 46 |
20 27
|
ltneii |
|- -u _pi =/= _pi |
| 47 |
|
hashprg |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) ) |
| 48 |
20 19 47
|
mp2an |
|- ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) |
| 49 |
46 48
|
mpbi |
|- ( # ` { -u _pi , _pi } ) = 2 |
| 50 |
17
|
elexi |
|- { -u _pi , _pi , ( E ` X ) } e. _V |
| 51 |
|
ovex |
|- ( -u _pi [,] _pi ) e. _V |
| 52 |
|
difexg |
|- ( ( -u _pi [,] _pi ) e. _V -> ( ( -u _pi [,] _pi ) \ dom G ) e. _V ) |
| 53 |
51 52
|
ax-mp |
|- ( ( -u _pi [,] _pi ) \ dom G ) e. _V |
| 54 |
50 53
|
unex |
|- ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. _V |
| 55 |
12 54
|
eqeltri |
|- H e. _V |
| 56 |
|
negex |
|- -u _pi e. _V |
| 57 |
56
|
tpid1 |
|- -u _pi e. { -u _pi , _pi , ( E ` X ) } |
| 58 |
19
|
elexi |
|- _pi e. _V |
| 59 |
58
|
tpid2 |
|- _pi e. { -u _pi , _pi , ( E ` X ) } |
| 60 |
|
prssi |
|- ( ( -u _pi e. { -u _pi , _pi , ( E ` X ) } /\ _pi e. { -u _pi , _pi , ( E ` X ) } ) -> { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } ) |
| 61 |
57 59 60
|
mp2an |
|- { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } |
| 62 |
|
ssun1 |
|- { -u _pi , _pi , ( E ` X ) } C_ ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
| 63 |
62 12
|
sseqtrri |
|- { -u _pi , _pi , ( E ` X ) } C_ H |
| 64 |
61 63
|
sstri |
|- { -u _pi , _pi } C_ H |
| 65 |
|
hashss |
|- ( ( H e. _V /\ { -u _pi , _pi } C_ H ) -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
| 66 |
55 64 65
|
mp2an |
|- ( # ` { -u _pi , _pi } ) <_ ( # ` H ) |
| 67 |
66
|
a1i |
|- ( ph -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
| 68 |
49 67
|
eqbrtrrid |
|- ( ph -> 2 <_ ( # ` H ) ) |
| 69 |
|
eluz2 |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( # ` H ) e. ZZ /\ 2 <_ ( # ` H ) ) ) |
| 70 |
16 45 68 69
|
syl3anbrc |
|- ( ph -> ( # ` H ) e. ( ZZ>= ` 2 ) ) |
| 71 |
|
uz2m1nn |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) -> ( ( # ` H ) - 1 ) e. NN ) |
| 72 |
70 71
|
syl |
|- ( ph -> ( ( # ` H ) - 1 ) e. NN ) |
| 73 |
13 72
|
eqeltrid |
|- ( ph -> M e. NN ) |
| 74 |
20
|
a1i |
|- ( ph -> -u _pi e. RR ) |
| 75 |
19
|
a1i |
|- ( ph -> _pi e. RR ) |
| 76 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
| 77 |
27
|
a1i |
|- ( ph -> -u _pi < _pi ) |
| 78 |
|
picn |
|- _pi e. CC |
| 79 |
78
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 80 |
78 78
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
| 81 |
79 2 80
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
| 82 |
74 75 77 81 11
|
fourierdlem4 |
|- ( ph -> E : RR --> ( -u _pi (,] _pi ) ) |
| 83 |
82 9
|
ffvelcdmd |
|- ( ph -> ( E ` X ) e. ( -u _pi (,] _pi ) ) |
| 84 |
76 83
|
sselid |
|- ( ph -> ( E ` X ) e. RR ) |
| 85 |
74 75 84
|
3jca |
|- ( ph -> ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) ) |
| 86 |
|
fvex |
|- ( E ` X ) e. _V |
| 87 |
56 58 86
|
tpss |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) <-> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
| 88 |
85 87
|
sylib |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
| 89 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 90 |
20 19 89
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 91 |
|
ssdifss |
|- ( ( -u _pi [,] _pi ) C_ RR -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
| 92 |
90 91
|
mp1i |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
| 93 |
88 92
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ RR ) |
| 94 |
12 93
|
eqsstrid |
|- ( ph -> H C_ RR ) |
| 95 |
42 94 14 13
|
fourierdlem36 |
|- ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 96 |
|
isof1o |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -1-1-onto-> H ) |
| 97 |
|
f1of |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) --> H ) |
| 98 |
95 96 97
|
3syl |
|- ( ph -> Q : ( 0 ... M ) --> H ) |
| 99 |
98 94
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 100 |
|
reex |
|- RR e. _V |
| 101 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 102 |
100 101
|
elmap |
|- ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) |
| 103 |
99 102
|
sylibr |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 104 |
|
fveq2 |
|- ( 0 = i -> ( Q ` 0 ) = ( Q ` i ) ) |
| 105 |
104
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) = ( Q ` i ) ) |
| 106 |
99
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 107 |
106
|
leidd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 108 |
107
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 109 |
105 108
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 110 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
| 111 |
110
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
| 112 |
111
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i e. RR ) |
| 113 |
|
elfzle1 |
|- ( i e. ( 0 ... M ) -> 0 <_ i ) |
| 114 |
113
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 <_ i ) |
| 115 |
|
neqne |
|- ( -. 0 = i -> 0 =/= i ) |
| 116 |
115
|
necomd |
|- ( -. 0 = i -> i =/= 0 ) |
| 117 |
116
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i =/= 0 ) |
| 118 |
112 114 117
|
ne0gt0d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 < i ) |
| 119 |
|
nnssnn0 |
|- NN C_ NN0 |
| 120 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 121 |
119 120
|
sseqtri |
|- NN C_ ( ZZ>= ` 0 ) |
| 122 |
121 73
|
sselid |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 123 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 124 |
122 123
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 125 |
98 124
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. H ) |
| 126 |
94 125
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 127 |
126
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) e. RR ) |
| 128 |
106
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` i ) e. RR ) |
| 129 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> 0 < i ) |
| 130 |
95
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 131 |
124
|
anim1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
| 132 |
131
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
| 133 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
| 134 |
130 132 133
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
| 135 |
129 134
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) < ( Q ` i ) ) |
| 136 |
127 128 135
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 137 |
118 136
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 138 |
109 137
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 140 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` i ) = -u _pi ) |
| 141 |
139 140
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ -u _pi ) |
| 142 |
74
|
rexrd |
|- ( ph -> -u _pi e. RR* ) |
| 143 |
75
|
rexrd |
|- ( ph -> _pi e. RR* ) |
| 144 |
|
lbicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> -u _pi e. ( -u _pi [,] _pi ) ) |
| 145 |
21 22 28 144
|
mp3an |
|- -u _pi e. ( -u _pi [,] _pi ) |
| 146 |
145
|
a1i |
|- ( ph -> -u _pi e. ( -u _pi [,] _pi ) ) |
| 147 |
|
ubicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> _pi e. ( -u _pi [,] _pi ) ) |
| 148 |
21 22 28 147
|
mp3an |
|- _pi e. ( -u _pi [,] _pi ) |
| 149 |
148
|
a1i |
|- ( ph -> _pi e. ( -u _pi [,] _pi ) ) |
| 150 |
|
iocssicc |
|- ( -u _pi (,] _pi ) C_ ( -u _pi [,] _pi ) |
| 151 |
150 83
|
sselid |
|- ( ph -> ( E ` X ) e. ( -u _pi [,] _pi ) ) |
| 152 |
|
tpssi |
|- ( ( -u _pi e. ( -u _pi [,] _pi ) /\ _pi e. ( -u _pi [,] _pi ) /\ ( E ` X ) e. ( -u _pi [,] _pi ) ) -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
| 153 |
146 149 151 152
|
syl3anc |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
| 154 |
|
difssd |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ ( -u _pi [,] _pi ) ) |
| 155 |
153 154
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ ( -u _pi [,] _pi ) ) |
| 156 |
12 155
|
eqsstrid |
|- ( ph -> H C_ ( -u _pi [,] _pi ) ) |
| 157 |
156 125
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) |
| 158 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) -> -u _pi <_ ( Q ` 0 ) ) |
| 159 |
142 143 157 158
|
syl3anc |
|- ( ph -> -u _pi <_ ( Q ` 0 ) ) |
| 160 |
159
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi <_ ( Q ` 0 ) ) |
| 161 |
126
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) e. RR ) |
| 162 |
20
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi e. RR ) |
| 163 |
161 162
|
letri3d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( ( Q ` 0 ) = -u _pi <-> ( ( Q ` 0 ) <_ -u _pi /\ -u _pi <_ ( Q ` 0 ) ) ) ) |
| 164 |
141 160 163
|
mpbir2and |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) = -u _pi ) |
| 165 |
63 57
|
sselii |
|- -u _pi e. H |
| 166 |
|
f1ofo |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) -onto-> H ) |
| 167 |
96 166
|
syl |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -onto-> H ) |
| 168 |
|
forn |
|- ( Q : ( 0 ... M ) -onto-> H -> ran Q = H ) |
| 169 |
95 167 168
|
3syl |
|- ( ph -> ran Q = H ) |
| 170 |
165 169
|
eleqtrrid |
|- ( ph -> -u _pi e. ran Q ) |
| 171 |
|
ffn |
|- ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) ) |
| 172 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
| 173 |
98 171 172
|
3syl |
|- ( ph -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
| 174 |
170 173
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) |
| 175 |
164 174
|
r19.29a |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
| 176 |
63 59
|
sselii |
|- _pi e. H |
| 177 |
176 169
|
eleqtrrid |
|- ( ph -> _pi e. ran Q ) |
| 178 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
| 179 |
98 171 178
|
3syl |
|- ( ph -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
| 180 |
177 179
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) |
| 181 |
98 156
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 182 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 183 |
122 182
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 184 |
181 183
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. ( -u _pi [,] _pi ) ) |
| 185 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` M ) e. ( -u _pi [,] _pi ) ) -> ( Q ` M ) <_ _pi ) |
| 186 |
142 143 184 185
|
syl3anc |
|- ( ph -> ( Q ` M ) <_ _pi ) |
| 187 |
186
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) <_ _pi ) |
| 188 |
|
id |
|- ( ( Q ` i ) = _pi -> ( Q ` i ) = _pi ) |
| 189 |
188
|
eqcomd |
|- ( ( Q ` i ) = _pi -> _pi = ( Q ` i ) ) |
| 190 |
189
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi = ( Q ` i ) ) |
| 191 |
107
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 192 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
| 193 |
192
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) = ( Q ` M ) ) |
| 194 |
191 193
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 195 |
111
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i e. RR ) |
| 196 |
|
elfzel2 |
|- ( i e. ( 0 ... M ) -> M e. ZZ ) |
| 197 |
196
|
zred |
|- ( i e. ( 0 ... M ) -> M e. RR ) |
| 198 |
197
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M e. RR ) |
| 199 |
|
elfzle2 |
|- ( i e. ( 0 ... M ) -> i <_ M ) |
| 200 |
199
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i <_ M ) |
| 201 |
|
neqne |
|- ( -. i = M -> i =/= M ) |
| 202 |
201
|
necomd |
|- ( -. i = M -> M =/= i ) |
| 203 |
202
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M =/= i ) |
| 204 |
195 198 200 203
|
leneltd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i < M ) |
| 205 |
106
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) e. RR ) |
| 206 |
90 184
|
sselid |
|- ( ph -> ( Q ` M ) e. RR ) |
| 207 |
206
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` M ) e. RR ) |
| 208 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> i < M ) |
| 209 |
95
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 210 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
| 211 |
183
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( 0 ... M ) ) |
| 212 |
210 211
|
jca |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
| 213 |
212
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
| 214 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
| 215 |
209 213 214
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
| 216 |
208 215
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) < ( Q ` M ) ) |
| 217 |
205 207 216
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 218 |
204 217
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 219 |
194 218
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 220 |
219
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 221 |
190 220
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi <_ ( Q ` M ) ) |
| 222 |
206
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) e. RR ) |
| 223 |
19
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi e. RR ) |
| 224 |
222 223
|
letri3d |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( ( Q ` M ) = _pi <-> ( ( Q ` M ) <_ _pi /\ _pi <_ ( Q ` M ) ) ) ) |
| 225 |
187 221 224
|
mpbir2and |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) = _pi ) |
| 226 |
225
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( 0 ... M ) ( Q ` i ) = _pi -> ( Q ` M ) = _pi ) ) |
| 227 |
180 226
|
mpd |
|- ( ph -> ( Q ` M ) = _pi ) |
| 228 |
|
elfzoelz |
|- ( i e. ( 0 ..^ M ) -> i e. ZZ ) |
| 229 |
228
|
zred |
|- ( i e. ( 0 ..^ M ) -> i e. RR ) |
| 230 |
229
|
ltp1d |
|- ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) |
| 231 |
230
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i < ( i + 1 ) ) |
| 232 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 233 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 234 |
232 233
|
jca |
|- ( i e. ( 0 ..^ M ) -> ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) |
| 235 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 236 |
95 234 235
|
syl2an |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 237 |
231 236
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 238 |
237
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 239 |
175 227 238
|
jca31 |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 240 |
10
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 241 |
73 240
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 242 |
103 239 241
|
mpbir2and |
|- ( ph -> Q e. ( P ` M ) ) |
| 243 |
4
|
reseq1i |
|- ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 244 |
21
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
| 245 |
22
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
| 246 |
181
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 247 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 248 |
244 245 246 247
|
fourierdlem27 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi (,) _pi ) ) |
| 249 |
248
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 250 |
243 249
|
eqtr2id |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 251 |
6 10 73 242 12 169
|
fourierdlem38 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 252 |
250 251
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 253 |
250
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 254 |
6
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( dom G -cn-> CC ) ) |
| 255 |
7
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 256 |
8
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 257 |
95
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 258 |
257 96 97
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> H ) |
| 259 |
84
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) e. RR ) |
| 260 |
257 167 168
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran Q = H ) |
| 261 |
254 255 256 257 258 247 237 248 259 12 260
|
fourierdlem46 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) /\ ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) ) |
| 262 |
261
|
simpld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 263 |
253 262
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 264 |
250
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 265 |
261
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 266 |
264 265
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 267 |
1 2 3 9 10 73 242 252 263 266
|
fourierdlem94 |
|- ( ph -> ( ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) /\ ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) |