| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem27.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
fourierdlem27.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
fourierdlem27.q |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 4 |
|
fourierdlem27.i |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A e. RR* ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> B e. RR* ) |
| 7 |
|
elioore |
|- ( x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) -> x e. RR ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR ) |
| 9 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 10 |
|
elfzofz |
|- ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> I e. ( 0 ... M ) ) |
| 12 |
3 11
|
ffvelcdmd |
|- ( ph -> ( Q ` I ) e. ( A [,] B ) ) |
| 13 |
9 12
|
sselid |
|- ( ph -> ( Q ` I ) e. RR* ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* ) |
| 15 |
8
|
rexrd |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR* ) |
| 16 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` I ) e. ( A [,] B ) ) -> A <_ ( Q ` I ) ) |
| 17 |
1 2 12 16
|
syl3anc |
|- ( ph -> A <_ ( Q ` I ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A <_ ( Q ` I ) ) |
| 19 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 20 |
4 19
|
syl |
|- ( ph -> ( I + 1 ) e. ( 0 ... M ) ) |
| 21 |
3 20
|
ffvelcdmd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. ( A [,] B ) ) |
| 22 |
9 21
|
sselid |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 24 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 25 |
|
ioogtlb |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x ) |
| 26 |
14 23 24 25
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x ) |
| 27 |
5 14 15 18 26
|
xrlelttrd |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A < x ) |
| 28 |
|
iooltub |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 29 |
14 23 24 28
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 30 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( I + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( I + 1 ) ) <_ B ) |
| 31 |
1 2 21 30
|
syl3anc |
|- ( ph -> ( Q ` ( I + 1 ) ) <_ B ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) <_ B ) |
| 33 |
15 23 6 29 32
|
xrltletrd |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < B ) |
| 34 |
5 6 8 27 33
|
eliood |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( A (,) B ) ) |
| 35 |
34
|
ralrimiva |
|- ( ph -> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. ( A (,) B ) ) |
| 36 |
|
dfss3 |
|- ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( A (,) B ) <-> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. ( A (,) B ) ) |
| 37 |
35 36
|
sylibr |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( A (,) B ) ) |