Metamath Proof Explorer


Theorem fourierdlem27

Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem27.a φA*
fourierdlem27.b φB*
fourierdlem27.q φQ:0MAB
fourierdlem27.i φI0..^M
Assertion fourierdlem27 φQIQI+1AB

Proof

Step Hyp Ref Expression
1 fourierdlem27.a φA*
2 fourierdlem27.b φB*
3 fourierdlem27.q φQ:0MAB
4 fourierdlem27.i φI0..^M
5 1 adantr φxQIQI+1A*
6 2 adantr φxQIQI+1B*
7 elioore xQIQI+1x
8 7 adantl φxQIQI+1x
9 iccssxr AB*
10 elfzofz I0..^MI0M
11 4 10 syl φI0M
12 3 11 ffvelcdmd φQIAB
13 9 12 sselid φQI*
14 13 adantr φxQIQI+1QI*
15 8 rexrd φxQIQI+1x*
16 iccgelb A*B*QIABAQI
17 1 2 12 16 syl3anc φAQI
18 17 adantr φxQIQI+1AQI
19 fzofzp1 I0..^MI+10M
20 4 19 syl φI+10M
21 3 20 ffvelcdmd φQI+1AB
22 9 21 sselid φQI+1*
23 22 adantr φxQIQI+1QI+1*
24 simpr φxQIQI+1xQIQI+1
25 ioogtlb QI*QI+1*xQIQI+1QI<x
26 14 23 24 25 syl3anc φxQIQI+1QI<x
27 5 14 15 18 26 xrlelttrd φxQIQI+1A<x
28 iooltub QI*QI+1*xQIQI+1x<QI+1
29 14 23 24 28 syl3anc φxQIQI+1x<QI+1
30 iccleub A*B*QI+1ABQI+1B
31 1 2 21 30 syl3anc φQI+1B
32 31 adantr φxQIQI+1QI+1B
33 15 23 6 29 32 xrltletrd φxQIQI+1x<B
34 5 6 8 27 33 eliood φxQIQI+1xAB
35 34 ralrimiva φxQIQI+1xAB
36 dfss3 QIQI+1ABxQIQI+1xAB
37 35 36 sylibr φQIQI+1AB