Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem27.a | |
|
fourierdlem27.b | |
||
fourierdlem27.q | |
||
fourierdlem27.i | |
||
Assertion | fourierdlem27 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem27.a | |
|
2 | fourierdlem27.b | |
|
3 | fourierdlem27.q | |
|
4 | fourierdlem27.i | |
|
5 | 1 | adantr | |
6 | 2 | adantr | |
7 | elioore | |
|
8 | 7 | adantl | |
9 | iccssxr | |
|
10 | elfzofz | |
|
11 | 4 10 | syl | |
12 | 3 11 | ffvelcdmd | |
13 | 9 12 | sselid | |
14 | 13 | adantr | |
15 | 8 | rexrd | |
16 | iccgelb | |
|
17 | 1 2 12 16 | syl3anc | |
18 | 17 | adantr | |
19 | fzofzp1 | |
|
20 | 4 19 | syl | |
21 | 3 20 | ffvelcdmd | |
22 | 9 21 | sselid | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | ioogtlb | |
|
26 | 14 23 24 25 | syl3anc | |
27 | 5 14 15 18 26 | xrlelttrd | |
28 | iooltub | |
|
29 | 14 23 24 28 | syl3anc | |
30 | iccleub | |
|
31 | 1 2 21 30 | syl3anc | |
32 | 31 | adantr | |
33 | 15 23 6 29 32 | xrltletrd | |
34 | 5 6 8 27 33 | eliood | |
35 | 34 | ralrimiva | |
36 | dfss3 | |
|
37 | 35 36 | sylibr | |