Metamath Proof Explorer


Theorem fourierdlem28

Description: Derivative of ( F( X + s ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem28.1 φF:
fourierdlem28.x φX
fourierdlem28.a φA
fourierdlem28.3b φB
fourierdlem28.d D=DFX+AX+B
fourierdlem28.df φD:X+AX+B
Assertion fourierdlem28 φdsABFX+sds=sABDX+s

Proof

Step Hyp Ref Expression
1 fourierdlem28.1 φF:
2 fourierdlem28.x φX
3 fourierdlem28.a φA
4 fourierdlem28.3b φB
5 fourierdlem28.d D=DFX+AX+B
6 fourierdlem28.df φD:X+AX+B
7 reelprrecn
8 7 a1i φ
9 2 3 readdcld φX+A
10 9 rexrd φX+A*
11 10 adantr φsABX+A*
12 2 4 readdcld φX+B
13 12 rexrd φX+B*
14 13 adantr φsABX+B*
15 2 adantr φsABX
16 elioore sABs
17 16 adantl φsABs
18 15 17 readdcld φsABX+s
19 3 adantr φsABA
20 19 rexrd φsABA*
21 4 rexrd φB*
22 21 adantr φsABB*
23 simpr φsABsAB
24 ioogtlb A*B*sABA<s
25 20 22 23 24 syl3anc φsABA<s
26 19 17 15 25 ltadd2dd φsABX+A<X+s
27 4 adantr φsABB
28 iooltub A*B*sABs<B
29 20 22 23 28 syl3anc φsABs<B
30 17 27 15 29 ltadd2dd φsABX+s<X+B
31 11 14 18 26 30 eliood φsABX+sX+AX+B
32 1red φsAB1
33 1 adantr φyX+AX+BF:
34 elioore yX+AX+By
35 34 adantl φyX+AX+By
36 33 35 ffvelcdmd φyX+AX+BFy
37 36 recnd φyX+AX+BFy
38 6 ffvelcdmda φyX+AX+BDy
39 15 recnd φsABX
40 0red φsAB0
41 iooretop ABtopGenran.
42 eqid TopOpenfld=TopOpenfld
43 42 tgioo2 topGenran.=TopOpenfld𝑡
44 41 43 eleqtri ABTopOpenfld𝑡
45 44 a1i φABTopOpenfld𝑡
46 2 recnd φX
47 8 45 46 dvmptconst φdsABXds=sAB0
48 17 recnd φsABs
49 8 45 dvmptidg φdsABsds=sAB1
50 8 39 40 47 48 32 49 dvmptadd φdsABX+sds=sAB0+1
51 0p1e1 0+1=1
52 51 a1i φsAB0+1=1
53 52 mpteq2dva φsAB0+1=sAB1
54 50 53 eqtrd φdsABX+sds=sAB1
55 1 feqmptd φF=yFy
56 55 reseq1d φFX+AX+B=yFyX+AX+B
57 ioossre X+AX+B
58 57 a1i φX+AX+B
59 58 resmptd φyFyX+AX+B=yX+AX+BFy
60 56 59 eqtr2d φyX+AX+BFy=FX+AX+B
61 60 oveq2d φdyX+AX+BFydy=DFX+AX+B
62 5 eqcomi DFX+AX+B=D
63 62 a1i φDFX+AX+B=D
64 6 feqmptd φD=yX+AX+BDy
65 61 63 64 3eqtrd φdyX+AX+BFydy=yX+AX+BDy
66 fveq2 y=X+sFy=FX+s
67 fveq2 y=X+sDy=DX+s
68 8 8 31 32 37 38 54 65 66 67 dvmptco φdsABFX+sds=sABDX+s1
69 6 adantr φsABD:X+AX+B
70 69 31 ffvelcdmd φsABDX+s
71 70 recnd φsABDX+s
72 71 mulridd φsABDX+s1=DX+s
73 72 mpteq2dva φsABDX+s1=sABDX+s
74 68 73 eqtrd φdsABFX+sds=sABDX+s