| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem28.1 |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem28.x |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem28.a |
|- ( ph -> A e. RR ) |
| 4 |
|
fourierdlem28.3b |
|- ( ph -> B e. RR ) |
| 5 |
|
fourierdlem28.d |
|- D = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
| 6 |
|
fourierdlem28.df |
|- ( ph -> D : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 7 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 8 |
7
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 9 |
2 3
|
readdcld |
|- ( ph -> ( X + A ) e. RR ) |
| 10 |
9
|
rexrd |
|- ( ph -> ( X + A ) e. RR* ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) e. RR* ) |
| 12 |
2 4
|
readdcld |
|- ( ph -> ( X + B ) e. RR ) |
| 13 |
12
|
rexrd |
|- ( ph -> ( X + B ) e. RR* ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + B ) e. RR* ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
| 16 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
| 18 |
15 17
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
| 19 |
3
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR ) |
| 20 |
19
|
rexrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR* ) |
| 21 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR* ) |
| 23 |
|
simpr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A (,) B ) ) |
| 24 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> A < s ) |
| 25 |
20 22 23 24
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A < s ) |
| 26 |
19 17 15 25
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) < ( X + s ) ) |
| 27 |
4
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR ) |
| 28 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> s < B ) |
| 29 |
20 22 23 28
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s < B ) |
| 30 |
17 27 15 29
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) < ( X + B ) ) |
| 31 |
11 14 18 26 30
|
eliood |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) |
| 32 |
|
1red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 1 e. RR ) |
| 33 |
1
|
adantr |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> F : RR --> RR ) |
| 34 |
|
elioore |
|- ( y e. ( ( X + A ) (,) ( X + B ) ) -> y e. RR ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> y e. RR ) |
| 36 |
33 35
|
ffvelcdmd |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( F ` y ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( F ` y ) e. CC ) |
| 38 |
6
|
ffvelcdmda |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( D ` y ) e. RR ) |
| 39 |
15
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. CC ) |
| 40 |
|
0red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 0 e. RR ) |
| 41 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 42 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 43 |
41 42
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 44 |
43
|
a1i |
|- ( ph -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 45 |
2
|
recnd |
|- ( ph -> X e. CC ) |
| 46 |
8 44 45
|
dvmptconst |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> X ) ) = ( s e. ( A (,) B ) |-> 0 ) ) |
| 47 |
17
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC ) |
| 48 |
8 44
|
dvmptidg |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> s ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
| 49 |
8 39 40 46 47 32 48
|
dvmptadd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( X + s ) ) ) = ( s e. ( A (,) B ) |-> ( 0 + 1 ) ) ) |
| 50 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 51 |
50
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 0 + 1 ) = 1 ) |
| 52 |
51
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( 0 + 1 ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
| 53 |
49 52
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( X + s ) ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
| 54 |
1
|
feqmptd |
|- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 55 |
54
|
reseq1d |
|- ( ph -> ( F |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( y e. RR |-> ( F ` y ) ) |` ( ( X + A ) (,) ( X + B ) ) ) ) |
| 56 |
|
ioossre |
|- ( ( X + A ) (,) ( X + B ) ) C_ RR |
| 57 |
56
|
a1i |
|- ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ RR ) |
| 58 |
57
|
resmptd |
|- ( ph -> ( ( y e. RR |-> ( F ` y ) ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) |
| 59 |
55 58
|
eqtr2d |
|- ( ph -> ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) = ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ph -> ( RR _D ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ) |
| 61 |
5
|
eqcomi |
|- ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = D |
| 62 |
61
|
a1i |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = D ) |
| 63 |
6
|
feqmptd |
|- ( ph -> D = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( D ` y ) ) ) |
| 64 |
60 62 63
|
3eqtrd |
|- ( ph -> ( RR _D ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( D ` y ) ) ) |
| 65 |
|
fveq2 |
|- ( y = ( X + s ) -> ( F ` y ) = ( F ` ( X + s ) ) ) |
| 66 |
|
fveq2 |
|- ( y = ( X + s ) -> ( D ` y ) = ( D ` ( X + s ) ) ) |
| 67 |
8 8 31 32 37 38 53 64 65 66
|
dvmptco |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( D ` ( X + s ) ) x. 1 ) ) ) |
| 68 |
6
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> D : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 69 |
68 31
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( D ` ( X + s ) ) e. RR ) |
| 70 |
69
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( D ` ( X + s ) ) e. CC ) |
| 71 |
70
|
mulridd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( D ` ( X + s ) ) x. 1 ) = ( D ` ( X + s ) ) ) |
| 72 |
71
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( D ` ( X + s ) ) x. 1 ) ) = ( s e. ( A (,) B ) |-> ( D ` ( X + s ) ) ) ) |
| 73 |
67 72
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( D ` ( X + s ) ) ) ) |