Metamath Proof Explorer


Theorem fourierdlem101

Description: Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem101.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
fourierdlem101.p P=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem101.g G=tππFtDNtX
fourierdlem101.q φQPM
fourierdlem101.6 φM
fourierdlem101.n φN
fourierdlem101.x φX
fourierdlem101.f φF:ππ
fourierdlem101.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem101.r φi0..^MRFQiQi+1limQi
fourierdlem101.l φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem101 φππFtDNtXdt=-π-XπXFX+sDNsds

Proof

Step Hyp Ref Expression
1 fourierdlem101.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
2 fourierdlem101.p P=mp0m|p0=πpm=πi0..^mpi<pi+1
3 fourierdlem101.g G=tππFtDNtX
4 fourierdlem101.q φQPM
5 fourierdlem101.6 φM
6 fourierdlem101.n φN
7 fourierdlem101.x φX
8 fourierdlem101.f φF:ππ
9 fourierdlem101.fcn φi0..^MFQiQi+1:QiQi+1cn
10 fourierdlem101.r φi0..^MRFQiQi+1limQi
11 fourierdlem101.l φi0..^MLFQiQi+1limQi+1
12 simpr φtππtππ
13 8 ffvelcdmda φtππFt
14 6 adantr φtππN
15 pire π
16 15 renegcli π
17 eliccre ππtππt
18 16 15 17 mp3an12 tππt
19 18 adantl φtππt
20 7 adantr φtππX
21 19 20 resubcld φtππtX
22 1 dirkerre NtXDNtX
23 14 21 22 syl2anc φtππDNtX
24 23 recnd φtππDNtX
25 13 24 mulcld φtππFtDNtX
26 3 fvmpt2 tππFtDNtXGt=FtDNtX
27 12 25 26 syl2anc φtππGt=FtDNtX
28 27 eqcomd φtππFtDNtX=Gt
29 28 itgeq2dv φππFtDNtXdt=ππGtdt
30 fveq2 j=iQj=Qi
31 30 oveq1d j=iQjX=QiX
32 31 cbvmptv j0MQjX=i0MQiX
33 25 3 fmptd φG:ππ
34 3 reseq1i GQiQi+1=tππFtDNtXQiQi+1
35 ioossicc QiQi+1QiQi+1
36 16 a1i φπ
37 36 rexrd φπ*
38 37 adantr φi0..^Mπ*
39 15 a1i φπ
40 39 rexrd φπ*
41 40 adantr φi0..^Mπ*
42 2 5 4 fourierdlem15 φQ:0Mππ
43 42 adantr φi0..^MQ:0Mππ
44 simpr φi0..^Mi0..^M
45 38 41 43 44 fourierdlem8 φi0..^MQiQi+1ππ
46 35 45 sstrid φi0..^MQiQi+1ππ
47 46 resmptd φi0..^MtππFtDNtXQiQi+1=tQiQi+1FtDNtX
48 34 47 eqtrid φi0..^MGQiQi+1=tQiQi+1FtDNtX
49 8 adantr φi0..^MF:ππ
50 49 46 feqresmpt φi0..^MFQiQi+1=tQiQi+1Ft
51 50 9 eqeltrrd φi0..^MtQiQi+1Ft:QiQi+1cn
52 eqidd φi0..^MrQiQi+1sDNs=sDNs
53 simpr φi0..^MrQiQi+1s=tQiQi+1tXrs=tQiQi+1tXr
54 eqidd φi0..^MrQiQi+1tQiQi+1tX=tQiQi+1tX
55 oveq1 t=rtX=rX
56 55 adantl φi0..^MrQiQi+1t=rtX=rX
57 simpr φi0..^MrQiQi+1rQiQi+1
58 elioore rQiQi+1r
59 58 adantl φrQiQi+1r
60 7 adantr φrQiQi+1X
61 59 60 resubcld φrQiQi+1rX
62 61 adantlr φi0..^MrQiQi+1rX
63 54 56 57 62 fvmptd φi0..^MrQiQi+1tQiQi+1tXr=rX
64 63 adantr φi0..^MrQiQi+1s=tQiQi+1tXrtQiQi+1tXr=rX
65 53 64 eqtrd φi0..^MrQiQi+1s=tQiQi+1tXrs=rX
66 65 fveq2d φi0..^MrQiQi+1s=tQiQi+1tXrDNs=DNrX
67 elioore tQiQi+1t
68 67 adantl φtQiQi+1t
69 7 adantr φtQiQi+1X
70 68 69 resubcld φtQiQi+1tX
71 70 adantlr φi0..^MtQiQi+1tX
72 eqid tQiQi+1tX=tQiQi+1tX
73 71 72 fmptd φi0..^MtQiQi+1tX:QiQi+1
74 73 ffvelcdmda φi0..^MrQiQi+1tQiQi+1tXr
75 6 ad2antrr φi0..^MrQiQi+1N
76 1 dirkerre NrXDNrX
77 75 62 76 syl2anc φi0..^MrQiQi+1DNrX
78 52 66 74 77 fvmptd φi0..^MrQiQi+1sDNstQiQi+1tXr=DNrX
79 78 eqcomd φi0..^MrQiQi+1DNrX=sDNstQiQi+1tXr
80 79 mpteq2dva φi0..^MrQiQi+1DNrX=rQiQi+1sDNstQiQi+1tXr
81 55 fveq2d t=rDNtX=DNrX
82 81 cbvmptv tQiQi+1DNtX=rQiQi+1DNrX
83 82 a1i φi0..^MtQiQi+1DNtX=rQiQi+1DNrX
84 1 dirkerre NsDNs
85 6 84 sylan φsDNs
86 eqid sDNs=sDNs
87 85 86 fmptd φsDNs:
88 87 adantr φi0..^MsDNs:
89 fcompt sDNs:tQiQi+1tX:QiQi+1sDNstQiQi+1tX=rQiQi+1sDNstQiQi+1tXr
90 88 73 89 syl2anc φi0..^MsDNstQiQi+1tX=rQiQi+1sDNstQiQi+1tXr
91 80 83 90 3eqtr4d φi0..^MtQiQi+1DNtX=sDNstQiQi+1tX
92 eqid ttX=ttX
93 simpr φtt
94 7 recnd φX
95 94 adantr φtX
96 93 95 negsubd φtt+X=tX
97 96 eqcomd φttX=t+X
98 97 mpteq2dva φttX=tt+X
99 94 negcld φX
100 eqid tt+X=tt+X
101 100 addccncf Xtt+X:cn
102 99 101 syl φtt+X:cn
103 98 102 eqeltrd φttX:cn
104 103 adantr φi0..^MttX:cn
105 ioossre QiQi+1
106 ax-resscn
107 105 106 sstri QiQi+1
108 107 a1i φi0..^MQiQi+1
109 106 a1i φi0..^M
110 92 104 108 109 71 cncfmptssg φi0..^MtQiQi+1tX:QiQi+1cn
111 85 recnd φsDNs
112 111 86 fmptd φsDNs:
113 ssid
114 1 dirkerf NDN:
115 6 114 syl φDN:
116 115 feqmptd φDN=sDNs
117 1 dirkercncf NDN:cn
118 6 117 syl φDN:cn
119 116 118 eqeltrrd φsDNs:cn
120 cncfcdm sDNs:cnsDNs:cnsDNs:
121 113 119 120 sylancr φsDNs:cnsDNs:
122 112 121 mpbird φsDNs:cn
123 122 adantr φi0..^MsDNs:cn
124 110 123 cncfco φi0..^MsDNstQiQi+1tX:QiQi+1cn
125 91 124 eqeltrd φi0..^MtQiQi+1DNtX:QiQi+1cn
126 51 125 mulcncf φi0..^MtQiQi+1FtDNtX:QiQi+1cn
127 48 126 eqeltrd φi0..^MGQiQi+1:QiQi+1cn
128 cncff FQiQi+1:QiQi+1cnFQiQi+1:QiQi+1
129 9 128 syl φi0..^MFQiQi+1:QiQi+1
130 115 adantr φsQiQi+1DN:
131 elioore sQiQi+1s
132 131 adantl φsQiQi+1s
133 7 adantr φsQiQi+1X
134 132 133 resubcld φsQiQi+1sX
135 130 134 ffvelcdmd φsQiQi+1DNsX
136 135 recnd φsQiQi+1DNsX
137 eqid sQiQi+1DNsX=sQiQi+1DNsX
138 136 137 fmptd φsQiQi+1DNsX:QiQi+1
139 138 adantr φi0..^MsQiQi+1DNsX:QiQi+1
140 eqid tQiQi+1FQiQi+1tsQiQi+1DNsXt=tQiQi+1FQiQi+1tsQiQi+1DNsXt
141 oveq1 t=QitX=QiX
142 141 fveq2d t=QiDNtX=DNQiX
143 142 eqcomd t=QiDNQiX=DNtX
144 143 adantl φi0..^MtQiQi+1Qit=QiDNQiX=DNtX
145 eqidd φi0..^MtQiQi+1Qi¬t=QisQiQi+1DNsX=sQiQi+1DNsX
146 oveq1 s=tsX=tX
147 146 fveq2d s=tDNsX=DNtX
148 147 adantl φi0..^MtQiQi+1Qi¬t=Qis=tDNsX=DNtX
149 velsn tQit=Qi
150 149 notbii ¬tQi¬t=Qi
151 elunnel2 tQiQi+1Qi¬tQitQiQi+1
152 150 151 sylan2br tQiQi+1Qi¬t=QitQiQi+1
153 152 adantll φi0..^MtQiQi+1Qi¬t=QitQiQi+1
154 115 ad2antrr φi0..^MtQiQi+1QiDN:
155 simpr φi0..^Mt=Qit=Qi
156 18 ssriv ππ
157 fzossfz 0..^M0M
158 157 44 sselid φi0..^Mi0M
159 43 158 ffvelcdmd φi0..^MQiππ
160 156 159 sselid φi0..^MQi
161 160 adantr φi0..^Mt=QiQi
162 155 161 eqeltrd φi0..^Mt=Qit
163 162 adantlr φi0..^MtQiQi+1Qit=Qit
164 153 67 syl φi0..^MtQiQi+1Qi¬t=Qit
165 163 164 pm2.61dan φi0..^MtQiQi+1Qit
166 7 ad2antrr φi0..^MtQiQi+1QiX
167 165 166 resubcld φi0..^MtQiQi+1QitX
168 154 167 ffvelcdmd φi0..^MtQiQi+1QiDNtX
169 168 adantr φi0..^MtQiQi+1Qi¬t=QiDNtX
170 145 148 153 169 fvmptd φi0..^MtQiQi+1Qi¬t=QisQiQi+1DNsXt=DNtX
171 144 170 ifeqda φi0..^MtQiQi+1Qiift=QiDNQiXsQiQi+1DNsXt=DNtX
172 171 mpteq2dva φi0..^MtQiQi+1Qiift=QiDNQiXsQiQi+1DNsXt=tQiQi+1QiDNtX
173 115 adantr φi0..^MDN:
174 simpr φsQiQi+1QisQiQi+1Qi
175 elun sQiQi+1QisQiQi+1sQi
176 174 175 sylib φsQiQi+1QisQiQi+1sQi
177 176 adantlr φi0..^MsQiQi+1QisQiQi+1sQi
178 elsni sQis=Qi
179 178 adantl φi0..^MsQis=Qi
180 160 adantr φi0..^MsQiQi
181 179 180 eqeltrd φi0..^MsQis
182 181 ex φi0..^MsQis
183 182 adantr φi0..^MsQiQi+1QisQis
184 pm3.44 sQiQi+1ssQissQiQi+1sQis
185 131 183 184 sylancr φi0..^MsQiQi+1QisQiQi+1sQis
186 177 185 mpd φi0..^MsQiQi+1Qis
187 7 ad2antrr φi0..^MsQiQi+1QiX
188 186 187 resubcld φi0..^MsQiQi+1QisX
189 eqid sQiQi+1QisX=sQiQi+1QisX
190 188 189 fmptd φi0..^MsQiQi+1QisX:QiQi+1Qi
191 fcompt DN:sQiQi+1QisX:QiQi+1QiDNsQiQi+1QisX=tQiQi+1QiDNsQiQi+1QisXt
192 173 190 191 syl2anc φi0..^MDNsQiQi+1QisX=tQiQi+1QiDNsQiQi+1QisXt
193 eqidd φi0..^MtQiQi+1QisQiQi+1QisX=sQiQi+1QisX
194 146 adantl φi0..^MtQiQi+1Qis=tsX=tX
195 simpr φi0..^MtQiQi+1QitQiQi+1Qi
196 193 194 195 167 fvmptd φi0..^MtQiQi+1QisQiQi+1QisXt=tX
197 196 fveq2d φi0..^MtQiQi+1QiDNsQiQi+1QisXt=DNtX
198 197 mpteq2dva φi0..^MtQiQi+1QiDNsQiQi+1QisXt=tQiQi+1QiDNtX
199 192 198 eqtr2d φi0..^MtQiQi+1QiDNtX=DNsQiQi+1QisX
200 eqid ssX=ssX
201 simpr φss
202 94 adantr φsX
203 201 202 negsubd φss+X=sX
204 203 eqcomd φssX=s+X
205 204 mpteq2dva φssX=ss+X
206 eqid ss+X=ss+X
207 206 addccncf Xss+X:cn
208 99 207 syl φss+X:cn
209 205 208 eqeltrd φssX:cn
210 209 adantr φi0..^MssX:cn
211 160 recnd φi0..^MQi
212 211 snssd φi0..^MQi
213 108 212 unssd φi0..^MQiQi+1Qi
214 200 210 213 109 188 cncfmptssg φi0..^MsQiQi+1QisX:QiQi+1Qicn
215 116 122 eqeltrd φDN:cn
216 215 adantr φi0..^MDN:cn
217 214 216 cncfco φi0..^MDNsQiQi+1QisX:QiQi+1Qicn
218 eqid TopOpenfld=TopOpenfld
219 eqid TopOpenfld𝑡QiQi+1Qi=TopOpenfld𝑡QiQi+1Qi
220 218 cnfldtop TopOpenfldTop
221 unicntop =TopOpenfld
222 221 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
223 220 222 ax-mp TopOpenfld𝑡=TopOpenfld
224 223 eqcomi TopOpenfld=TopOpenfld𝑡
225 218 219 224 cncfcn QiQi+1QiQiQi+1Qicn=TopOpenfld𝑡QiQi+1QiCnTopOpenfld
226 213 113 225 sylancl φi0..^MQiQi+1Qicn=TopOpenfld𝑡QiQi+1QiCnTopOpenfld
227 217 226 eleqtrd φi0..^MDNsQiQi+1QisXTopOpenfld𝑡QiQi+1QiCnTopOpenfld
228 199 227 eqeltrd φi0..^MtQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnTopOpenfld
229 218 cnfldtopon TopOpenfldTopOn
230 resttopon TopOpenfldTopOnQiQi+1QiTopOpenfld𝑡QiQi+1QiTopOnQiQi+1Qi
231 229 213 230 sylancr φi0..^MTopOpenfld𝑡QiQi+1QiTopOnQiQi+1Qi
232 cncnp TopOpenfld𝑡QiQi+1QiTopOnQiQi+1QiTopOpenfldTopOntQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnTopOpenfldtQiQi+1QiDNtX:QiQi+1QisQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenflds
233 231 229 232 sylancl φi0..^MtQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnTopOpenfldtQiQi+1QiDNtX:QiQi+1QisQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenflds
234 228 233 mpbid φi0..^MtQiQi+1QiDNtX:QiQi+1QisQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenflds
235 234 simprd φi0..^MsQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenflds
236 eqidd φi0..^MQi=Qi
237 elsng QiQiQiQi=Qi
238 160 237 syl φi0..^MQiQiQi=Qi
239 236 238 mpbird φi0..^MQiQi
240 239 olcd φi0..^MQiQiQi+1QiQi
241 elun QiQiQi+1QiQiQiQi+1QiQi
242 240 241 sylibr φi0..^MQiQiQi+1Qi
243 fveq2 s=QiTopOpenfld𝑡QiQi+1QiCnPTopOpenflds=TopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
244 243 eleq2d s=QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenfldstQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
245 244 rspccva sQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenfldsQiQiQi+1QitQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
246 235 242 245 syl2anc φi0..^MtQiQi+1QiDNtXTopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
247 172 246 eqeltrd φi0..^MtQiQi+1Qiift=QiDNQiXsQiQi+1DNsXtTopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
248 eqid tQiQi+1Qiift=QiDNQiXsQiQi+1DNsXt=tQiQi+1Qiift=QiDNQiXsQiQi+1DNsXt
249 219 218 248 139 108 211 ellimc φi0..^MDNQiXsQiQi+1DNsXlimQitQiQi+1Qiift=QiDNQiXsQiQi+1DNsXtTopOpenfld𝑡QiQi+1QiCnPTopOpenfldQi
250 247 249 mpbird φi0..^MDNQiXsQiQi+1DNsXlimQi
251 129 139 140 10 250 mullimcf φi0..^MRDNQiXtQiQi+1FQiQi+1tsQiQi+1DNsXtlimQi
252 fvres tQiQi+1FQiQi+1t=Ft
253 252 adantl φi0..^MtQiQi+1FQiQi+1t=Ft
254 253 oveq1d φi0..^MtQiQi+1FQiQi+1tsQiQi+1DNsXt=FtsQiQi+1DNsXt
255 254 mpteq2dva φi0..^MtQiQi+1FQiQi+1tsQiQi+1DNsXt=tQiQi+1FtsQiQi+1DNsXt
256 255 oveq1d φi0..^MtQiQi+1FQiQi+1tsQiQi+1DNsXtlimQi=tQiQi+1FtsQiQi+1DNsXtlimQi
257 251 256 eleqtrd φi0..^MRDNQiXtQiQi+1FtsQiQi+1DNsXtlimQi
258 eqidd φi0..^MtQiQi+1sQiQi+1DNsX=sQiQi+1DNsX
259 simpr φi0..^MtQiQi+1s=ts=t
260 259 oveq1d φi0..^MtQiQi+1s=tsX=tX
261 260 fveq2d φi0..^MtQiQi+1s=tDNsX=DNtX
262 simpr φi0..^MtQiQi+1tQiQi+1
263 115 ad2antrr φi0..^MtQiQi+1DN:
264 263 71 ffvelcdmd φi0..^MtQiQi+1DNtX
265 258 261 262 264 fvmptd φi0..^MtQiQi+1sQiQi+1DNsXt=DNtX
266 265 oveq2d φi0..^MtQiQi+1FtsQiQi+1DNsXt=FtDNtX
267 266 mpteq2dva φi0..^MtQiQi+1FtsQiQi+1DNsXt=tQiQi+1FtDNtX
268 267 oveq1d φi0..^MtQiQi+1FtsQiQi+1DNsXtlimQi=tQiQi+1FtDNtXlimQi
269 257 268 eleqtrd φi0..^MRDNQiXtQiQi+1FtDNtXlimQi
270 48 eqcomd φi0..^MtQiQi+1FtDNtX=GQiQi+1
271 270 oveq1d φi0..^MtQiQi+1FtDNtXlimQi=GQiQi+1limQi
272 269 271 eleqtrd φi0..^MRDNQiXGQiQi+1limQi
273 iftrue t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=DNQi+1X
274 oveq1 t=Qi+1tX=Qi+1X
275 274 eqcomd t=Qi+1Qi+1X=tX
276 275 fveq2d t=Qi+1DNQi+1X=DNtX
277 273 276 eqtrd t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=DNtX
278 277 adantl φi0..^MtQiQi+1Qi+1t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=DNtX
279 iffalse ¬t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=sQiQi+1DNsXt
280 279 adantl φi0..^MtQiQi+1Qi+1¬t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=sQiQi+1DNsXt
281 eqidd φi0..^MtQiQi+1Qi+1¬t=Qi+1sQiQi+1DNsX=sQiQi+1DNsX
282 147 adantl φi0..^MtQiQi+1Qi+1¬t=Qi+1s=tDNsX=DNtX
283 elun tQiQi+1Qi+1tQiQi+1tQi+1
284 283 biimpi tQiQi+1Qi+1tQiQi+1tQi+1
285 284 orcomd tQiQi+1Qi+1tQi+1tQiQi+1
286 285 ad2antlr φi0..^MtQiQi+1Qi+1¬t=Qi+1tQi+1tQiQi+1
287 velsn tQi+1t=Qi+1
288 287 notbii ¬tQi+1¬t=Qi+1
289 288 biimpri ¬t=Qi+1¬tQi+1
290 289 adantl φi0..^MtQiQi+1Qi+1¬t=Qi+1¬tQi+1
291 pm2.53 tQi+1tQiQi+1¬tQi+1tQiQi+1
292 286 290 291 sylc φi0..^MtQiQi+1Qi+1¬t=Qi+1tQiQi+1
293 173 ad2antrr φi0..^MtQiQi+1Qi+1¬t=Qi+1DN:
294 292 67 syl φi0..^MtQiQi+1Qi+1¬t=Qi+1t
295 7 ad3antrrr φi0..^MtQiQi+1Qi+1¬t=Qi+1X
296 294 295 resubcld φi0..^MtQiQi+1Qi+1¬t=Qi+1tX
297 293 296 ffvelcdmd φi0..^MtQiQi+1Qi+1¬t=Qi+1DNtX
298 281 282 292 297 fvmptd φi0..^MtQiQi+1Qi+1¬t=Qi+1sQiQi+1DNsXt=DNtX
299 280 298 eqtrd φi0..^MtQiQi+1Qi+1¬t=Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=DNtX
300 278 299 pm2.61dan φi0..^MtQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=DNtX
301 300 mpteq2dva φi0..^MtQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=tQiQi+1Qi+1DNtX
302 eqid tDNtX=tDNtX
303 106 a1i φ
304 simpr φtt
305 7 adantr φtX
306 304 305 resubcld φttX
307 92 103 303 303 306 cncfmptssg φttX:cn
308 307 215 cncfcompt φtDNtX:cn
309 308 adantr φi0..^MtDNtX:cn
310 105 a1i φi0..^MQiQi+1
311 fzofzp1 i0..^Mi+10M
312 311 adantl φi0..^Mi+10M
313 43 312 ffvelcdmd φi0..^MQi+1ππ
314 156 313 sselid φi0..^MQi+1
315 314 snssd φi0..^MQi+1
316 310 315 unssd φi0..^MQiQi+1Qi+1
317 113 a1i φi0..^M
318 173 adantr φi0..^MtQiQi+1Qi+1DN:
319 316 sselda φi0..^MtQiQi+1Qi+1t
320 7 ad2antrr φi0..^MtQiQi+1Qi+1X
321 319 320 resubcld φi0..^MtQiQi+1Qi+1tX
322 318 321 ffvelcdmd φi0..^MtQiQi+1Qi+1DNtX
323 322 recnd φi0..^MtQiQi+1Qi+1DNtX
324 302 309 316 317 323 cncfmptssg φi0..^MtQiQi+1Qi+1DNtX:QiQi+1Qi+1cn
325 156 106 sstri ππ
326 325 313 sselid φi0..^MQi+1
327 326 snssd φi0..^MQi+1
328 108 327 unssd φi0..^MQiQi+1Qi+1
329 eqid TopOpenfld𝑡QiQi+1Qi+1=TopOpenfld𝑡QiQi+1Qi+1
330 218 329 224 cncfcn QiQi+1Qi+1QiQi+1Qi+1cn=TopOpenfld𝑡QiQi+1Qi+1CnTopOpenfld
331 328 113 330 sylancl φi0..^MQiQi+1Qi+1cn=TopOpenfld𝑡QiQi+1Qi+1CnTopOpenfld
332 324 331 eleqtrd φi0..^MtQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnTopOpenfld
333 resttopon TopOpenfldTopOnQiQi+1Qi+1TopOpenfld𝑡QiQi+1Qi+1TopOnQiQi+1Qi+1
334 229 328 333 sylancr φi0..^MTopOpenfld𝑡QiQi+1Qi+1TopOnQiQi+1Qi+1
335 cncnp TopOpenfld𝑡QiQi+1Qi+1TopOnQiQi+1Qi+1TopOpenfldTopOntQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnTopOpenfldtQiQi+1Qi+1DNtX:QiQi+1Qi+1sQiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenflds
336 334 229 335 sylancl φi0..^MtQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnTopOpenfldtQiQi+1Qi+1DNtX:QiQi+1Qi+1sQiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenflds
337 332 336 mpbid φi0..^MtQiQi+1Qi+1DNtX:QiQi+1Qi+1sQiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenflds
338 337 simprd φi0..^MsQiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenflds
339 eqidd φi0..^MQi+1=Qi+1
340 elsng Qi+1Qi+1Qi+1Qi+1=Qi+1
341 314 340 syl φi0..^MQi+1Qi+1Qi+1=Qi+1
342 339 341 mpbird φi0..^MQi+1Qi+1
343 342 olcd φi0..^MQi+1QiQi+1Qi+1Qi+1
344 elun Qi+1QiQi+1Qi+1Qi+1QiQi+1Qi+1Qi+1
345 343 344 sylibr φi0..^MQi+1QiQi+1Qi+1
346 fveq2 s=Qi+1TopOpenfld𝑡QiQi+1Qi+1CnPTopOpenflds=TopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
347 346 eleq2d s=Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldstQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
348 347 rspccva sQiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldsQi+1QiQi+1Qi+1tQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
349 338 345 348 syl2anc φi0..^MtQiQi+1Qi+1DNtXTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
350 301 349 eqeltrd φi0..^MtQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXtTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
351 eqid tQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt=tQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXt
352 329 218 351 139 108 326 ellimc φi0..^MDNQi+1XsQiQi+1DNsXlimQi+1tQiQi+1Qi+1ift=Qi+1DNQi+1XsQiQi+1DNsXtTopOpenfld𝑡QiQi+1Qi+1CnPTopOpenfldQi+1
353 350 352 mpbird φi0..^MDNQi+1XsQiQi+1DNsXlimQi+1
354 129 139 140 11 353 mullimcf φi0..^MLDNQi+1XtQiQi+1FQiQi+1tsQiQi+1DNsXtlimQi+1
355 267 255 48 3eqtr4d φi0..^MtQiQi+1FQiQi+1tsQiQi+1DNsXt=GQiQi+1
356 355 oveq1d φi0..^MtQiQi+1FQiQi+1tsQiQi+1DNsXtlimQi+1=GQiQi+1limQi+1
357 354 356 eleqtrd φi0..^MLDNQi+1XGQiQi+1limQi+1
358 2 32 5 4 7 33 127 272 357 fourierdlem93 φππGtdt=-π-XπXGX+sds
359 3 a1i φs-π-XπXG=tππFtDNtX
360 fveq2 t=X+sFt=FX+s
361 360 oveq1d t=X+sFtDNtX=FX+sDNtX
362 361 adantl φs-π-XπXt=X+sFtDNtX=FX+sDNtX
363 oveq1 t=X+stX=X+s-X
364 94 adantr φs-π-XπXX
365 36 7 resubcld φ-π-X
366 365 adantr φs-π-XπX-π-X
367 39 7 resubcld φπX
368 367 adantr φs-π-XπXπX
369 simpr φs-π-XπXs-π-XπX
370 eliccre -π-XπXs-π-XπXs
371 366 368 369 370 syl3anc φs-π-XπXs
372 371 recnd φs-π-XπXs
373 364 372 pncan2d φs-π-XπXX+s-X=s
374 363 373 sylan9eqr φs-π-XπXt=X+stX=s
375 374 fveq2d φs-π-XπXt=X+sDNtX=DNs
376 375 oveq2d φs-π-XπXt=X+sFX+sDNtX=FX+sDNs
377 362 376 eqtrd φs-π-XπXt=X+sFtDNtX=FX+sDNs
378 16 a1i φs-π-XπXπ
379 15 a1i φs-π-XπXπ
380 7 adantr φs-π-XπXX
381 380 371 readdcld φs-π-XπXX+s
382 36 recnd φπ
383 94 382 pncan3d φX+π-X=π
384 383 eqcomd φπ=X+π-X
385 384 adantr φs-π-XπXπ=X+π-X
386 elicc2 -π-XπXs-π-XπXs-π-XssπX
387 366 368 386 syl2anc φs-π-XπXs-π-XπXs-π-XssπX
388 369 387 mpbid φs-π-XπXs-π-XssπX
389 388 simp2d φs-π-XπX-π-Xs
390 366 371 380 389 leadd2dd φs-π-XπXX+π-XX+s
391 385 390 eqbrtrd φs-π-XπXπX+s
392 388 simp3d φs-π-XπXsπX
393 371 368 380 392 leadd2dd φs-π-XπXX+sX+π-X
394 picn π
395 394 a1i φs-π-XπXπ
396 364 395 pncan3d φs-π-XπXX+π-X=π
397 393 396 breqtrd φs-π-XπXX+sπ
398 378 379 381 391 397 eliccd φs-π-XπXX+sππ
399 8 adantr φs-π-XπXF:ππ
400 399 398 ffvelcdmd φs-π-XπXFX+s
401 371 111 syldan φs-π-XπXDNs
402 400 401 mulcld φs-π-XπXFX+sDNs
403 359 377 398 402 fvmptd φs-π-XπXGX+s=FX+sDNs
404 403 itgeq2dv φ-π-XπXGX+sds=-π-XπXFX+sDNsds
405 29 358 404 3eqtrd φππFtDNtXdt=-π-XπXFX+sDNsds