| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem97.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem97.g |
⊢ 𝐺 = ( ℝ D 𝐹 ) |
| 3 |
|
fourierdlem97.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 4 |
|
fourierdlem97.a |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
fourierdlem97.b |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
fourierdlem97.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 7 |
|
fourierdlem97.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 8 |
|
fourierdlem97.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 9 |
|
fourierdlem97.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 10 |
|
fourierdlem97.qcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 11 |
|
fourierdlem97.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 12 |
|
fourierdlem97.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
| 13 |
|
fourierdlem97.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) ) |
| 14 |
|
fourierdlem97.v |
⊢ 𝑉 = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 15 |
|
fourierdlem97.h |
⊢ 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
| 16 |
|
ioossre |
⊢ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ℝ |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ℝ ) |
| 18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 19 |
|
iftrue |
⊢ ( 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 21 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 22 |
|
dvfre |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 23 |
1 21 22
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 24 |
2
|
feq1i |
⊢ ( 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 25 |
23 24
|
sylibr |
⊢ ( 𝜑 → 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 27 |
|
id |
⊢ ( 𝑠 ∈ dom 𝐺 → 𝑠 ∈ dom 𝐺 ) |
| 28 |
2
|
dmeqi |
⊢ dom 𝐺 = dom ( ℝ D 𝐹 ) |
| 29 |
27 28
|
eleqtrdi |
⊢ ( 𝑠 ∈ dom 𝐺 → 𝑠 ∈ dom ( ℝ D 𝐹 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → 𝑠 ∈ dom ( ℝ D 𝐹 ) ) |
| 31 |
26 30
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑠 ) ∈ ℝ ) |
| 32 |
20 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 34 |
|
iffalse |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = 0 ) |
| 35 |
|
0red |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → 0 ∈ ℝ ) |
| 36 |
34 35
|
eqeltrd |
⊢ ( ¬ 𝑠 ∈ dom 𝐺 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ¬ 𝑠 ∈ dom 𝐺 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 38 |
33 37
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 39 |
18 38
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 40 |
15
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ℝ ∧ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
| 41 |
18 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
| 42 |
|
elioore |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) → 𝐷 ∈ ℝ ) |
| 43 |
12 42
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 44 |
11
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 45 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 47 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝐷 ) |
| 48 |
44 46 12 47
|
syl3anc |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 49 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( ℎ · 𝑇 ) ) = ( 𝑥 + ( ℎ · 𝑇 ) ) ) |
| 50 |
49
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 52 |
51
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } |
| 53 |
52
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑥 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 54 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 · 𝑇 ) = ( 𝑙 · 𝑇 ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑙 · 𝑇 ) ) ) |
| 56 |
55
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 57 |
56
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 58 |
57
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐶 [,] 𝐷 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 59 |
58
|
rabbiia |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } |
| 60 |
59
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 61 |
|
oveq1 |
⊢ ( 𝑙 = ℎ → ( 𝑙 · 𝑇 ) = ( ℎ · 𝑇 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑙 = ℎ → ( 𝑦 + ( 𝑙 · 𝑇 ) ) = ( 𝑦 + ( ℎ · 𝑇 ) ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑙 = ℎ → ( ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 64 |
63
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) |
| 65 |
64
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐶 [,] 𝐷 ) → ( ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 66 |
65
|
rabbiia |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } |
| 67 |
66
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 68 |
60 67
|
eqtri |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 69 |
68
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 70 |
69
|
oveq1i |
⊢ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 71 |
|
oveq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 · 𝑇 ) = ( ℎ · 𝑇 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑘 = ℎ → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ) |
| 73 |
72
|
breq1d |
⊢ ( 𝑘 = ℎ → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 74 |
73
|
cbvrabv |
⊢ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } = { ℎ ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } |
| 75 |
74
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) = sup ( { ℎ ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( ℎ · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
| 76 |
|
fveq2 |
⊢ ( 𝑗 = 𝑒 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑒 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝑗 = 𝑒 → ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) = ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ) |
| 78 |
77
|
breq1d |
⊢ ( 𝑗 = 𝑒 → ( ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 79 |
78
|
cbvrabv |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } = { 𝑒 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } |
| 80 |
79
|
supeq1i |
⊢ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) = sup ( { 𝑒 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑒 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
| 81 |
6 3 7 8 11 43 48 53 70 14 13 75 80
|
fourierdlem64 |
⊢ ( 𝜑 → ( ( sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ∧ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ℤ ) ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ) |
| 82 |
81
|
simprd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 83 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝜑 ) |
| 84 |
|
simpl2l |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 85 |
|
cncff |
⊢ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 86 |
10 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 87 |
|
ffun |
⊢ ( 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ → Fun 𝐺 ) |
| 88 |
25 87
|
syl |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → Fun 𝐺 ) |
| 90 |
|
ffvresb |
⊢ ( Fun 𝐺 → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) ) |
| 92 |
86 91
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) |
| 93 |
92
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) ) |
| 94 |
93
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ dom 𝐺 ) |
| 95 |
94
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑠 ∈ dom 𝐺 ) |
| 96 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑠 ∈ dom 𝐺 ) |
| 97 |
95 96
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ) |
| 98 |
83 84 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐺 ) |
| 99 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) |
| 100 |
83 99
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ) |
| 101 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
| 103 |
101 102
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 104 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 105 |
7 104
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 106 |
8 105
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 107 |
106
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 108 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 109 |
107 108
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 111 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 113 |
110 112
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 114 |
113
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 115 |
114
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 117 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 119 |
110 118
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 120 |
119
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 121 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 122 |
121
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 123 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → 𝑡 ∈ ℝ ) |
| 124 |
123
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 ∈ ℝ ) |
| 125 |
|
zre |
⊢ ( 𝑙 ∈ ℤ → 𝑙 ∈ ℝ ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℝ ) |
| 127 |
126
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑙 ∈ ℝ ) |
| 128 |
4 5
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 129 |
6 128
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑇 ∈ ℝ ) |
| 131 |
127 130
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
| 132 |
124 131
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
| 133 |
113
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 134 |
125
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → 𝑙 ∈ ℝ ) |
| 135 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → 𝑇 ∈ ℝ ) |
| 136 |
134 135
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
| 137 |
133 136
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
| 138 |
137
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
| 140 |
120 136
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ ) |
| 141 |
140
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
| 142 |
141
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ) |
| 143 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 144 |
|
ioogtlb |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ) |
| 145 |
139 142 143 144
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ) |
| 146 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 147 |
146 131 124
|
ltaddsubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) < 𝑡 ↔ ( 𝑄 ‘ 𝑖 ) < ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) |
| 148 |
145 147
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) |
| 149 |
|
iooltub |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ∈ ℝ* ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 150 |
139 142 143 149
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 151 |
124 131 121
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑡 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 152 |
150 151
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 153 |
116 122 132 148 152
|
eliood |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 154 |
100 103 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 155 |
98 154
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
| 156 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
| 157 |
|
recn |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℂ ) |
| 158 |
157
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 159 |
|
zcn |
⊢ ( 𝑙 ∈ ℤ → 𝑙 ∈ ℂ ) |
| 160 |
159
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑙 ∈ ℂ ) |
| 161 |
129
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 162 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 163 |
160 162
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( 𝑙 · 𝑇 ) ∈ ℂ ) |
| 164 |
158 163
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) = 𝑡 ) |
| 165 |
164
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 166 |
165
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → 𝑡 = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 167 |
|
ovex |
⊢ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ V |
| 168 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝑠 ∈ dom 𝐺 ↔ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) |
| 169 |
168
|
anbi2d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) ) |
| 170 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝑠 + ( 𝑙 · 𝑇 ) ) = ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 171 |
170
|
eleq1d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ↔ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) ) |
| 172 |
170
|
fveq2d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 173 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) |
| 174 |
172 173
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ↔ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) |
| 175 |
171 174
|
anbi12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ↔ ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) ) |
| 176 |
169 175
|
imbi12d |
⊢ ( 𝑠 = ( 𝑡 − ( 𝑙 · 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) ) ) |
| 177 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 178 |
177
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 179 |
1 178
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 181 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℝ ) |
| 182 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
| 183 |
181 182
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) → ( 𝑙 · 𝑇 ) ∈ ℝ ) |
| 184 |
179
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 185 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 186 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑙 ∈ ℤ ) |
| 187 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → 𝑠 ∈ ℝ ) |
| 188 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 |
184 185 186 187 188
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑠 ) ) |
| 190 |
180 183 189 2
|
fperdvper |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑠 ∈ dom 𝐺 ) → ( ( 𝑠 + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑠 + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) ) |
| 191 |
167 176 190
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( 𝐺 ‘ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ) ) ) |
| 192 |
191
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
| 193 |
192
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) + ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) |
| 194 |
166 193
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 ) → 𝑡 ∈ dom 𝐺 ) |
| 195 |
194
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
| 196 |
156 195
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℤ ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
| 197 |
196
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
| 198 |
197
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑡 − ( 𝑙 · 𝑇 ) ) ∈ dom 𝐺 → 𝑡 ∈ dom 𝐺 ) ) |
| 199 |
155 198
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑡 ∈ dom 𝐺 ) |
| 200 |
199
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑡 ∈ dom 𝐺 ) |
| 201 |
|
dfss3 |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ↔ ∀ 𝑡 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑡 ∈ dom 𝐺 ) |
| 202 |
200 201
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) |
| 203 |
202
|
3exp |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ℤ ) → ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) ) ) |
| 204 |
203
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) ) |
| 205 |
82 204
|
mpd |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ dom 𝐺 ) |
| 206 |
205
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑠 ∈ dom 𝐺 ) |
| 207 |
206
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 208 |
41 207
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐻 ‘ 𝑠 ) ) |
| 209 |
208
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 210 |
28
|
a1i |
⊢ ( 𝜑 → dom 𝐺 = dom ( ℝ D 𝐹 ) ) |
| 211 |
210
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : dom 𝐺 ⟶ ℝ ↔ 𝐺 : dom ( ℝ D 𝐹 ) ⟶ ℝ ) ) |
| 212 |
25 211
|
mpbird |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℝ ) |
| 213 |
212 205
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 214 |
38 15
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℝ ) |
| 215 |
214 17
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 216 |
209 213 215
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 217 |
214 178
|
fssd |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℂ ) |
| 218 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) ) |
| 219 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝑠 ∈ dom 𝐺 ↔ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
| 220 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 221 |
219 220
|
ifbieq1d |
⊢ ( 𝑠 = ( 𝑥 + 𝑇 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
| 222 |
179 129 9 2
|
fperdvper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 223 |
222
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
| 224 |
223
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 225 |
221 224
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 226 |
225
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 227 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 228 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 229 |
227 228
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 231 |
212
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝐺 : dom 𝐺 ⟶ ℝ ) |
| 232 |
223
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
| 233 |
231 232
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ∈ ℝ ) |
| 234 |
218 226 230 233
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 235 |
222
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 236 |
235
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 237 |
|
eleq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 ∈ dom 𝐺 ↔ 𝑥 ∈ dom 𝐺 ) ) |
| 238 |
|
fveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 239 |
237 238
|
ifbieq1d |
⊢ ( 𝑠 = 𝑥 → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 240 |
239
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = 𝑥 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 241 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ ℝ ) |
| 242 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
| 243 |
242
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 244 |
212
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 245 |
243 244
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 246 |
245
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 247 |
218 240 241 246
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 248 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
| 249 |
248
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 250 |
247 249
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 251 |
234 236 250
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
| 252 |
229
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 𝑇 ) ∈ ℂ ) |
| 253 |
228
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 254 |
252 253
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 + 𝑇 ) + - 𝑇 ) = ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) |
| 255 |
227
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 256 |
255 253
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 + 𝑇 ) − 𝑇 ) = 𝑥 ) |
| 257 |
254 256
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
| 258 |
257
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝑥 = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
| 259 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
| 260 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝜑 ) |
| 261 |
260 259
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
| 262 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝑦 ∈ dom 𝐺 ↔ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) |
| 263 |
262
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) ↔ ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) ) ) |
| 264 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝑦 + - 𝑇 ) = ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) |
| 265 |
264
|
eleq1d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ↔ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ) ) |
| 266 |
264
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) ) |
| 267 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 268 |
266 267
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 269 |
265 268
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) |
| 270 |
263 269
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 + 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) ) |
| 271 |
129
|
renegcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
| 272 |
161
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑇 ) = - 𝑇 ) |
| 273 |
272
|
eqcomd |
⊢ ( 𝜑 → - 𝑇 = ( - 1 · 𝑇 ) ) |
| 274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → - 𝑇 = ( - 1 · 𝑇 ) ) |
| 275 |
274
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + - 𝑇 ) = ( 𝑦 + ( - 1 · 𝑇 ) ) ) |
| 276 |
275
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + ( - 1 · 𝑇 ) ) ) ) |
| 277 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 278 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 279 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℤ ) |
| 280 |
279
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → - 1 ∈ ℤ ) |
| 281 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 282 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 283 |
277 278 280 281 282
|
fperiodmul |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + ( - 1 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 284 |
276 283
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 285 |
179 271 284 2
|
fperdvper |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐺 ) → ( ( 𝑦 + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( 𝑦 + - 𝑇 ) ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 286 |
270 285
|
vtoclg |
⊢ ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 → ( ( 𝜑 ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) ) |
| 287 |
259 261 286
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ∧ ( 𝐺 ‘ ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) ) |
| 288 |
287
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → ( ( 𝑥 + 𝑇 ) + - 𝑇 ) ∈ dom 𝐺 ) |
| 289 |
258 288
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
| 290 |
289
|
stoic1a |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ¬ ( 𝑥 + 𝑇 ) ∈ dom 𝐺 ) |
| 291 |
290
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) = 0 ) |
| 292 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 𝐻 = ( 𝑠 ∈ ℝ ↦ if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) ) |
| 293 |
221
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = ( 𝑥 + 𝑇 ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
| 294 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 295 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 0 ∈ ℝ ) |
| 296 |
291 295
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ∈ ℝ ) |
| 297 |
292 293 294 296
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = if ( ( 𝑥 + 𝑇 ) ∈ dom 𝐺 , ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) , 0 ) ) |
| 298 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ¬ 𝑥 ∈ dom 𝐺 ) |
| 299 |
298
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → if ( 𝑥 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑥 ) , 0 ) = 0 ) |
| 300 |
239 299
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) ∧ 𝑠 = 𝑥 ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = 0 ) |
| 301 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → 𝑥 ∈ ℝ ) |
| 302 |
292 300 301 295
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 303 |
291 297 302
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ dom 𝐺 ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
| 304 |
251 303
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
| 305 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 306 |
305
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 307 |
305 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ∈ ℝ ) |
| 308 |
306 307 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
| 309 |
308
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) ) |
| 310 |
94
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → if ( 𝑠 ∈ dom 𝐺 , ( 𝐺 ‘ 𝑠 ) , 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 311 |
309 310
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 312 |
311
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 313 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 : ℝ ⟶ ℝ ) |
| 314 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 315 |
314
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 316 |
313 315
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 317 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 : dom 𝐺 ⟶ ℝ ) |
| 318 |
317 97
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 319 |
312 316 318
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 320 |
319 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 321 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 322 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + ( 𝑙 · 𝑇 ) ) = ( 𝑦 + ( 𝑙 · 𝑇 ) ) ) |
| 323 |
322
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 324 |
323
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 325 |
324
|
cbvrabv |
⊢ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } |
| 326 |
325
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 327 |
326
|
eqcomi |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑧 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑧 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 328 |
60
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 329 |
328
|
oveq1i |
⊢ ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 330 |
|
isoeq5 |
⊢ ( ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 331 |
67 330
|
ax-mp |
⊢ ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 332 |
331
|
iotabii |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ ℎ ∈ ℤ ( 𝑦 + ( ℎ · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 333 |
|
isoeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
| 334 |
333
|
cbviotavw |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 335 |
332 334 14
|
3eqtr4ri |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑦 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
| 336 |
|
id |
⊢ ( 𝑣 = 𝑥 → 𝑣 = 𝑥 ) |
| 337 |
|
oveq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝐵 − 𝑣 ) = ( 𝐵 − 𝑥 ) ) |
| 338 |
337
|
oveq1d |
⊢ ( 𝑣 = 𝑥 → ( ( 𝐵 − 𝑣 ) / 𝑇 ) = ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) |
| 339 |
338
|
fveq2d |
⊢ ( 𝑣 = 𝑥 → ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ) |
| 340 |
339
|
oveq1d |
⊢ ( 𝑣 = 𝑥 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 341 |
336 340
|
oveq12d |
⊢ ( 𝑣 = 𝑥 → ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 342 |
341
|
cbvmptv |
⊢ ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 343 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
| 344 |
|
id |
⊢ ( 𝑢 = 𝑧 → 𝑢 = 𝑧 ) |
| 345 |
343 344
|
ifbieq2d |
⊢ ( 𝑢 = 𝑧 → if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) = if ( 𝑧 = 𝐵 , 𝐴 , 𝑧 ) ) |
| 346 |
345
|
cbvmptv |
⊢ ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) = ( 𝑧 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑧 = 𝐵 , 𝐴 , 𝑧 ) ) |
| 347 |
|
eqid |
⊢ ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
| 348 |
|
eqid |
⊢ ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 349 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) (,) ( ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ↦ ( ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ‘ ( 𝑧 − ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ) = ( 𝑧 ∈ ( ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) (,) ( ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ↦ ( ( 𝐻 ↾ ( ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ‘ ( 𝑧 − ( ( 𝑉 ‘ ( 𝐽 + 1 ) ) − ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ) ) ) |
| 350 |
|
fveq2 |
⊢ ( 𝑖 = 𝑡 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑡 ) ) |
| 351 |
350
|
breq1d |
⊢ ( 𝑖 = 𝑡 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) ) |
| 352 |
351
|
cbvrabv |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } = { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } |
| 353 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) = ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) |
| 354 |
353
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) = ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) |
| 355 |
354
|
eqcomd |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) = ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) ) |
| 356 |
355
|
breq2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) ) ) |
| 357 |
356
|
rabbidv |
⊢ ( 𝑤 = 𝑥 → { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } = { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } ) |
| 358 |
352 357
|
eqtr2id |
⊢ ( 𝑤 = 𝑥 → { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } ) |
| 359 |
358
|
supeq1d |
⊢ ( 𝑤 = 𝑥 → sup ( { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
| 360 |
359
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ sup ( { 𝑡 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑤 ) ) } , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑢 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑢 = 𝐵 , 𝐴 , 𝑢 ) ) ‘ ( ( 𝑣 ∈ ℝ ↦ ( 𝑣 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑣 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
| 361 |
3 6 7 8 217 304 320 11 12 321 327 329 335 342 346 13 347 348 349 360
|
fourierdlem90 |
⊢ ( 𝜑 → ( 𝐻 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) –cn→ ℂ ) ) |
| 362 |
216 361
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) –cn→ ℂ ) ) |