Metamath Proof Explorer


Theorem fourierdlem97

Description: F is continuous on the intervals induced by the moved partition V . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem97.f φ F :
fourierdlem97.g G = D F
fourierdlem97.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem97.a φ B
fourierdlem97.b φ A
fourierdlem97.t T = B A
fourierdlem97.m φ M
fourierdlem97.q φ Q P M
fourierdlem97.fper φ x F x + T = F x
fourierdlem97.qcn φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem97.c φ C
fourierdlem97.d φ D C +∞
fourierdlem97.j φ J 0 ..^ C D y C D | k y + k T ran Q 1
fourierdlem97.v V = ι g | g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | h y + h T ran Q
fourierdlem97.h H = s if s dom G G s 0
Assertion fourierdlem97 φ G V J V J + 1 : V J V J + 1 cn

Proof

Step Hyp Ref Expression
1 fourierdlem97.f φ F :
2 fourierdlem97.g G = D F
3 fourierdlem97.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
4 fourierdlem97.a φ B
5 fourierdlem97.b φ A
6 fourierdlem97.t T = B A
7 fourierdlem97.m φ M
8 fourierdlem97.q φ Q P M
9 fourierdlem97.fper φ x F x + T = F x
10 fourierdlem97.qcn φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
11 fourierdlem97.c φ C
12 fourierdlem97.d φ D C +∞
13 fourierdlem97.j φ J 0 ..^ C D y C D | k y + k T ran Q 1
14 fourierdlem97.v V = ι g | g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | h y + h T ran Q
15 fourierdlem97.h H = s if s dom G G s 0
16 ioossre V J V J + 1
17 16 a1i φ V J V J + 1
18 17 sselda φ s V J V J + 1 s
19 iftrue s dom G if s dom G G s 0 = G s
20 19 adantl φ s dom G if s dom G G s 0 = G s
21 ssid
22 dvfre F : F : dom F
23 1 21 22 sylancl φ F : dom F
24 2 feq1i G : dom F F : dom F
25 23 24 sylibr φ G : dom F
26 25 adantr φ s dom G G : dom F
27 id s dom G s dom G
28 2 dmeqi dom G = dom F
29 27 28 eleqtrdi s dom G s dom F
30 29 adantl φ s dom G s dom F
31 26 30 ffvelrnd φ s dom G G s
32 20 31 eqeltrd φ s dom G if s dom G G s 0
33 32 adantlr φ s s dom G if s dom G G s 0
34 iffalse ¬ s dom G if s dom G G s 0 = 0
35 0red ¬ s dom G 0
36 34 35 eqeltrd ¬ s dom G if s dom G G s 0
37 36 adantl φ s ¬ s dom G if s dom G G s 0
38 33 37 pm2.61dan φ s if s dom G G s 0
39 18 38 syldan φ s V J V J + 1 if s dom G G s 0
40 15 fvmpt2 s if s dom G G s 0 H s = if s dom G G s 0
41 18 39 40 syl2anc φ s V J V J + 1 H s = if s dom G G s 0
42 elioore D C +∞ D
43 12 42 syl φ D
44 11 rexrd φ C *
45 pnfxr +∞ *
46 45 a1i φ +∞ *
47 ioogtlb C * +∞ * D C +∞ C < D
48 44 46 12 47 syl3anc φ C < D
49 oveq1 y = x y + h T = x + h T
50 49 eleq1d y = x y + h T ran Q x + h T ran Q
51 50 rexbidv y = x h y + h T ran Q h x + h T ran Q
52 51 cbvrabv y C D | h y + h T ran Q = x C D | h x + h T ran Q
53 52 uneq2i C D y C D | h y + h T ran Q = C D x C D | h x + h T ran Q
54 oveq1 k = l k T = l T
55 54 oveq2d k = l y + k T = y + l T
56 55 eleq1d k = l y + k T ran Q y + l T ran Q
57 56 cbvrexvw k y + k T ran Q l y + l T ran Q
58 57 a1i y C D k y + k T ran Q l y + l T ran Q
59 58 rabbiia y C D | k y + k T ran Q = y C D | l y + l T ran Q
60 59 uneq2i C D y C D | k y + k T ran Q = C D y C D | l y + l T ran Q
61 oveq1 l = h l T = h T
62 61 oveq2d l = h y + l T = y + h T
63 62 eleq1d l = h y + l T ran Q y + h T ran Q
64 63 cbvrexvw l y + l T ran Q h y + h T ran Q
65 64 a1i y C D l y + l T ran Q h y + h T ran Q
66 65 rabbiia y C D | l y + l T ran Q = y C D | h y + h T ran Q
67 66 uneq2i C D y C D | l y + l T ran Q = C D y C D | h y + h T ran Q
68 60 67 eqtri C D y C D | k y + k T ran Q = C D y C D | h y + h T ran Q
69 68 fveq2i C D y C D | k y + k T ran Q = C D y C D | h y + h T ran Q
70 69 oveq1i C D y C D | k y + k T ran Q 1 = C D y C D | h y + h T ran Q 1
71 oveq1 k = h k T = h T
72 71 oveq2d k = h Q 0 + k T = Q 0 + h T
73 72 breq1d k = h Q 0 + k T V J Q 0 + h T V J
74 73 cbvrabv k | Q 0 + k T V J = h | Q 0 + h T V J
75 74 supeq1i sup k | Q 0 + k T V J < = sup h | Q 0 + h T V J <
76 fveq2 j = e Q j = Q e
77 76 oveq1d j = e Q j + sup k | Q 0 + k T V J < T = Q e + sup k | Q 0 + k T V J < T
78 77 breq1d j = e Q j + sup k | Q 0 + k T V J < T V J Q e + sup k | Q 0 + k T V J < T V J
79 78 cbvrabv j 0 ..^ M | Q j + sup k | Q 0 + k T V J < T V J = e 0 ..^ M | Q e + sup k | Q 0 + k T V J < T V J
80 79 supeq1i sup j 0 ..^ M | Q j + sup k | Q 0 + k T V J < T V J < = sup e 0 ..^ M | Q e + sup k | Q 0 + k T V J < T V J <
81 6 3 7 8 11 43 48 53 70 14 13 75 80 fourierdlem64 φ sup j 0 ..^ M | Q j + sup k | Q 0 + k T V J < T V J < 0 ..^ M sup k | Q 0 + k T V J < i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T
82 81 simprd φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T
83 simpl1 φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 φ
84 simpl2l φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 i 0 ..^ M
85 cncff G Q i Q i + 1 : Q i Q i + 1 cn G Q i Q i + 1 : Q i Q i + 1
86 10 85 syl φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1
87 ffun G : dom F Fun G
88 25 87 syl φ Fun G
89 88 adantr φ i 0 ..^ M Fun G
90 ffvresb Fun G G Q i Q i + 1 : Q i Q i + 1 s Q i Q i + 1 s dom G G s
91 89 90 syl φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 s Q i Q i + 1 s dom G G s
92 86 91 mpbid φ i 0 ..^ M s Q i Q i + 1 s dom G G s
93 92 r19.21bi φ i 0 ..^ M s Q i Q i + 1 s dom G G s
94 93 simpld φ i 0 ..^ M s Q i Q i + 1 s dom G
95 94 ralrimiva φ i 0 ..^ M s Q i Q i + 1 s dom G
96 dfss3 Q i Q i + 1 dom G s Q i Q i + 1 s dom G
97 95 96 sylibr φ i 0 ..^ M Q i Q i + 1 dom G
98 83 84 97 syl2anc φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 Q i Q i + 1 dom G
99 simpl2 φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 i 0 ..^ M l
100 83 99 jca φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 φ i 0 ..^ M l
101 simpl3 φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 V J V J + 1 Q i + l T Q i + 1 + l T
102 simpr φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t V J V J + 1
103 101 102 sseldd φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t Q i + l T Q i + 1 + l T
104 3 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
105 7 104 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
106 8 105 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
107 106 simpld φ Q 0 M
108 elmapi Q 0 M Q : 0 M
109 107 108 syl φ Q : 0 M
110 109 adantr φ i 0 ..^ M Q : 0 M
111 elfzofz i 0 ..^ M i 0 M
112 111 adantl φ i 0 ..^ M i 0 M
113 110 112 ffvelrnd φ i 0 ..^ M Q i
114 113 rexrd φ i 0 ..^ M Q i *
115 114 adantrr φ i 0 ..^ M l Q i *
116 115 adantr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i *
117 fzofzp1 i 0 ..^ M i + 1 0 M
118 117 adantl φ i 0 ..^ M i + 1 0 M
119 110 118 ffvelrnd φ i 0 ..^ M Q i + 1
120 119 adantrr φ i 0 ..^ M l Q i + 1
121 120 adantr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + 1
122 121 rexrd φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + 1 *
123 elioore t Q i + l T Q i + 1 + l T t
124 123 adantl φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t
125 zre l l
126 125 adantl i 0 ..^ M l l
127 126 ad2antlr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T l
128 4 5 resubcld φ B A
129 6 128 eqeltrid φ T
130 129 ad2antrr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T T
131 127 130 remulcld φ i 0 ..^ M l t Q i + l T Q i + 1 + l T l T
132 124 131 resubcld φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t l T
133 113 adantrr φ i 0 ..^ M l Q i
134 125 ad2antll φ i 0 ..^ M l l
135 129 adantr φ i 0 ..^ M l T
136 134 135 remulcld φ i 0 ..^ M l l T
137 133 136 readdcld φ i 0 ..^ M l Q i + l T
138 137 rexrd φ i 0 ..^ M l Q i + l T *
139 138 adantr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + l T *
140 120 136 readdcld φ i 0 ..^ M l Q i + 1 + l T
141 140 rexrd φ i 0 ..^ M l Q i + 1 + l T *
142 141 adantr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + 1 + l T *
143 simpr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t Q i + l T Q i + 1 + l T
144 ioogtlb Q i + l T * Q i + 1 + l T * t Q i + l T Q i + 1 + l T Q i + l T < t
145 139 142 143 144 syl3anc φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + l T < t
146 133 adantr φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i
147 146 131 124 ltaddsubd φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i + l T < t Q i < t l T
148 145 147 mpbid φ i 0 ..^ M l t Q i + l T Q i + 1 + l T Q i < t l T
149 iooltub Q i + l T * Q i + 1 + l T * t Q i + l T Q i + 1 + l T t < Q i + 1 + l T
150 139 142 143 149 syl3anc φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t < Q i + 1 + l T
151 124 131 121 ltsubaddd φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t l T < Q i + 1 t < Q i + 1 + l T
152 150 151 mpbird φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t l T < Q i + 1
153 116 122 132 148 152 eliood φ i 0 ..^ M l t Q i + l T Q i + 1 + l T t l T Q i Q i + 1
154 100 103 153 syl2anc φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t l T Q i Q i + 1
155 98 154 sseldd φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t l T dom G
156 elioore t V J V J + 1 t
157 recn t t
158 157 adantl φ l t t
159 zcn l l
160 159 ad2antlr φ l t l
161 129 recnd φ T
162 161 ad2antrr φ l t T
163 160 162 mulcld φ l t l T
164 158 163 npcand φ l t t - l T + l T = t
165 164 eqcomd φ l t t = t - l T + l T
166 165 adantr φ l t t l T dom G t = t - l T + l T
167 ovex t l T V
168 eleq1 s = t l T s dom G t l T dom G
169 168 anbi2d s = t l T φ l s dom G φ l t l T dom G
170 oveq1 s = t l T s + l T = t - l T + l T
171 170 eleq1d s = t l T s + l T dom G t - l T + l T dom G
172 170 fveq2d s = t l T G s + l T = G t - l T + l T
173 fveq2 s = t l T G s = G t l T
174 172 173 eqeq12d s = t l T G s + l T = G s G t - l T + l T = G t l T
175 171 174 anbi12d s = t l T s + l T dom G G s + l T = G s t - l T + l T dom G G t - l T + l T = G t l T
176 169 175 imbi12d s = t l T φ l s dom G s + l T dom G G s + l T = G s φ l t l T dom G t - l T + l T dom G G t - l T + l T = G t l T
177 ax-resscn
178 177 a1i φ
179 1 178 fssd φ F :
180 179 adantr φ l F :
181 125 adantl φ l l
182 129 adantr φ l T
183 181 182 remulcld φ l l T
184 179 ad2antrr φ l s F :
185 129 ad2antrr φ l s T
186 simplr φ l s l
187 simpr φ l s s
188 9 ad4ant14 φ l s x F x + T = F x
189 184 185 186 187 188 fperiodmul φ l s F s + l T = F s
190 180 183 189 2 fperdvper φ l s dom G s + l T dom G G s + l T = G s
191 167 176 190 vtocl φ l t l T dom G t - l T + l T dom G G t - l T + l T = G t l T
192 191 simpld φ l t l T dom G t - l T + l T dom G
193 192 adantlr φ l t t l T dom G t - l T + l T dom G
194 166 193 eqeltrd φ l t t l T dom G t dom G
195 194 ex φ l t t l T dom G t dom G
196 156 195 sylan2 φ l t V J V J + 1 t l T dom G t dom G
197 196 adantlrl φ i 0 ..^ M l t V J V J + 1 t l T dom G t dom G
198 197 3adantl3 φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t l T dom G t dom G
199 155 198 mpd φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t dom G
200 199 ralrimiva φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T t V J V J + 1 t dom G
201 dfss3 V J V J + 1 dom G t V J V J + 1 t dom G
202 200 201 sylibr φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T V J V J + 1 dom G
203 202 3exp φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T V J V J + 1 dom G
204 203 rexlimdvv φ i 0 ..^ M l V J V J + 1 Q i + l T Q i + 1 + l T V J V J + 1 dom G
205 82 204 mpd φ V J V J + 1 dom G
206 205 sselda φ s V J V J + 1 s dom G
207 206 iftrued φ s V J V J + 1 if s dom G G s 0 = G s
208 41 207 eqtr2d φ s V J V J + 1 G s = H s
209 208 mpteq2dva φ s V J V J + 1 G s = s V J V J + 1 H s
210 28 a1i φ dom G = dom F
211 210 feq2d φ G : dom G G : dom F
212 25 211 mpbird φ G : dom G
213 212 205 feqresmpt φ G V J V J + 1 = s V J V J + 1 G s
214 38 15 fmptd φ H :
215 214 17 feqresmpt φ H V J V J + 1 = s V J V J + 1 H s
216 209 213 215 3eqtr4d φ G V J V J + 1 = H V J V J + 1
217 214 178 fssd φ H :
218 15 a1i φ x x dom G H = s if s dom G G s 0
219 eleq1 s = x + T s dom G x + T dom G
220 fveq2 s = x + T G s = G x + T
221 219 220 ifbieq1d s = x + T if s dom G G s 0 = if x + T dom G G x + T 0
222 179 129 9 2 fperdvper φ x dom G x + T dom G G x + T = G x
223 222 simpld φ x dom G x + T dom G
224 223 iftrued φ x dom G if x + T dom G G x + T 0 = G x + T
225 221 224 sylan9eqr φ x dom G s = x + T if s dom G G s 0 = G x + T
226 225 adantllr φ x x dom G s = x + T if s dom G G s 0 = G x + T
227 simpr φ x x
228 129 adantr φ x T
229 227 228 readdcld φ x x + T
230 229 adantr φ x x dom G x + T
231 212 ad2antrr φ x x dom G G : dom G
232 223 adantlr φ x x dom G x + T dom G
233 231 232 ffvelrnd φ x x dom G G x + T
234 218 226 230 233 fvmptd φ x x dom G H x + T = G x + T
235 222 simprd φ x dom G G x + T = G x
236 235 adantlr φ x x dom G G x + T = G x
237 eleq1 s = x s dom G x dom G
238 fveq2 s = x G s = G x
239 237 238 ifbieq1d s = x if s dom G G s 0 = if x dom G G x 0
240 239 adantl φ x x dom G s = x if s dom G G s 0 = if x dom G G x 0
241 simplr φ x x dom G x
242 simpr φ x dom G x dom G
243 242 iftrued φ x dom G if x dom G G x 0 = G x
244 212 ffvelrnda φ x dom G G x
245 243 244 eqeltrd φ x dom G if x dom G G x 0
246 245 adantlr φ x x dom G if x dom G G x 0
247 218 240 241 246 fvmptd φ x x dom G H x = if x dom G G x 0
248 simpr φ x x dom G x dom G
249 248 iftrued φ x x dom G if x dom G G x 0 = G x
250 247 249 eqtr2d φ x x dom G G x = H x
251 234 236 250 3eqtrd φ x x dom G H x + T = H x
252 229 recnd φ x x + T
253 228 recnd φ x T
254 252 253 negsubd φ x x + T + T = x + T - T
255 227 recnd φ x x
256 255 253 pncand φ x x + T - T = x
257 254 256 eqtr2d φ x x = x + T + T
258 257 adantr φ x x + T dom G x = x + T + T
259 simpr φ x x + T dom G x + T dom G
260 simpll φ x x + T dom G φ
261 260 259 jca φ x x + T dom G φ x + T dom G
262 eleq1 y = x + T y dom G x + T dom G
263 262 anbi2d y = x + T φ y dom G φ x + T dom G
264 oveq1 y = x + T y + T = x + T + T
265 264 eleq1d y = x + T y + T dom G x + T + T dom G
266 264 fveq2d y = x + T G y + T = G x + T + T
267 fveq2 y = x + T G y = G x + T
268 266 267 eqeq12d y = x + T G y + T = G y G x + T + T = G x + T
269 265 268 anbi12d y = x + T y + T dom G G y + T = G y x + T + T dom G G x + T + T = G x + T
270 263 269 imbi12d y = x + T φ y dom G y + T dom G G y + T = G y φ x + T dom G x + T + T dom G G x + T + T = G x + T
271 129 renegcld φ T
272 161 mulm1d φ -1 T = T
273 272 eqcomd φ T = -1 T
274 273 adantr φ y T = -1 T
275 274 oveq2d φ y y + T = y + -1 T
276 275 fveq2d φ y F y + T = F y + -1 T
277 179 adantr φ y F :
278 129 adantr φ y T
279 1zzd φ y 1
280 279 znegcld φ y 1
281 simpr φ y y
282 9 adantlr φ y x F x + T = F x
283 277 278 280 281 282 fperiodmul φ y F y + -1 T = F y
284 276 283 eqtrd φ y F y + T = F y
285 179 271 284 2 fperdvper φ y dom G y + T dom G G y + T = G y
286 270 285 vtoclg x + T dom G φ x + T dom G x + T + T dom G G x + T + T = G x + T
287 259 261 286 sylc φ x x + T dom G x + T + T dom G G x + T + T = G x + T
288 287 simpld φ x x + T dom G x + T + T dom G
289 258 288 eqeltrd φ x x + T dom G x dom G
290 289 stoic1a φ x ¬ x dom G ¬ x + T dom G
291 290 iffalsed φ x ¬ x dom G if x + T dom G G x + T 0 = 0
292 15 a1i φ x ¬ x dom G H = s if s dom G G s 0
293 221 adantl φ x ¬ x dom G s = x + T if s dom G G s 0 = if x + T dom G G x + T 0
294 229 adantr φ x ¬ x dom G x + T
295 0red φ x ¬ x dom G 0
296 291 295 eqeltrd φ x ¬ x dom G if x + T dom G G x + T 0
297 292 293 294 296 fvmptd φ x ¬ x dom G H x + T = if x + T dom G G x + T 0
298 simpr φ x ¬ x dom G ¬ x dom G
299 298 iffalsed φ x ¬ x dom G if x dom G G x 0 = 0
300 239 299 sylan9eqr φ x ¬ x dom G s = x if s dom G G s 0 = 0
301 simplr φ x ¬ x dom G x
302 292 300 301 295 fvmptd φ x ¬ x dom G H x = 0
303 291 297 302 3eqtr4d φ x ¬ x dom G H x + T = H x
304 251 303 pm2.61dan φ x H x + T = H x
305 elioore s Q i Q i + 1 s
306 305 adantl φ s Q i Q i + 1 s
307 305 38 sylan2 φ s Q i Q i + 1 if s dom G G s 0
308 306 307 40 syl2anc φ s Q i Q i + 1 H s = if s dom G G s 0
309 308 adantlr φ i 0 ..^ M s Q i Q i + 1 H s = if s dom G G s 0
310 94 iftrued φ i 0 ..^ M s Q i Q i + 1 if s dom G G s 0 = G s
311 309 310 eqtrd φ i 0 ..^ M s Q i Q i + 1 H s = G s
312 311 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 H s = s Q i Q i + 1 G s
313 214 adantr φ i 0 ..^ M H :
314 ioossre Q i Q i + 1
315 314 a1i φ i 0 ..^ M Q i Q i + 1
316 313 315 feqresmpt φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 H s
317 212 adantr φ i 0 ..^ M G : dom G
318 317 97 feqresmpt φ i 0 ..^ M G Q i Q i + 1 = s Q i Q i + 1 G s
319 312 316 318 3eqtr4d φ i 0 ..^ M H Q i Q i + 1 = G Q i Q i + 1
320 319 10 eqeltrd φ i 0 ..^ M H Q i Q i + 1 : Q i Q i + 1 cn
321 eqid m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1 = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
322 oveq1 z = y z + l T = y + l T
323 322 eleq1d z = y z + l T ran Q y + l T ran Q
324 323 rexbidv z = y l z + l T ran Q l y + l T ran Q
325 324 cbvrabv z C D | l z + l T ran Q = y C D | l y + l T ran Q
326 325 uneq2i C D z C D | l z + l T ran Q = C D y C D | l y + l T ran Q
327 326 eqcomi C D y C D | l y + l T ran Q = C D z C D | l z + l T ran Q
328 60 fveq2i C D y C D | k y + k T ran Q = C D y C D | l y + l T ran Q
329 328 oveq1i C D y C D | k y + k T ran Q 1 = C D y C D | l y + l T ran Q 1
330 isoeq5 C D y C D | l y + l T ran Q = C D y C D | h y + h T ran Q g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | h y + h T ran Q
331 67 330 ax-mp g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | h y + h T ran Q
332 331 iotabii ι g | g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q = ι g | g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | h y + h T ran Q
333 isoeq1 f = g f Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q
334 333 cbviotavw ι f | f Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q = ι g | g Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q
335 332 334 14 3eqtr4ri V = ι f | f Isom < , < 0 C D y C D | k y + k T ran Q 1 C D y C D | l y + l T ran Q
336 id v = x v = x
337 oveq2 v = x B v = B x
338 337 oveq1d v = x B v T = B x T
339 338 fveq2d v = x B v T = B x T
340 339 oveq1d v = x B v T T = B x T T
341 336 340 oveq12d v = x v + B v T T = x + B x T T
342 341 cbvmptv v v + B v T T = x x + B x T T
343 eqeq1 u = z u = B z = B
344 id u = z u = z
345 343 344 ifbieq2d u = z if u = B A u = if z = B A z
346 345 cbvmptv u A B if u = B A u = z A B if z = B A z
347 eqid V J + 1 v v + B v T T V J + 1 = V J + 1 v v + B v T T V J + 1
348 eqid H u A B if u = B A u v v + B v T T V J v v + B v T T V J + 1 = H u A B if u = B A u v v + B v T T V J v v + B v T T V J + 1
349 eqid z u A B if u = B A u v v + B v T T V J + V J + 1 - v v + B v T T V J + 1 v v + B v T T V J + 1 + V J + 1 - v v + B v T T V J + 1 H u A B if u = B A u v v + B v T T V J v v + B v T T V J + 1 z V J + 1 v v + B v T T V J + 1 = z u A B if u = B A u v v + B v T T V J + V J + 1 - v v + B v T T V J + 1 v v + B v T T V J + 1 + V J + 1 - v v + B v T T V J + 1 H u A B if u = B A u v v + B v T T V J v v + B v T T V J + 1 z V J + 1 v v + B v T T V J + 1
350 fveq2 i = t Q i = Q t
351 350 breq1d i = t Q i u A B if u = B A u v v + B v T T x Q t u A B if u = B A u v v + B v T T x
352 351 cbvrabv i 0 ..^ M | Q i u A B if u = B A u v v + B v T T x = t 0 ..^ M | Q t u A B if u = B A u v v + B v T T x
353 fveq2 w = x v v + B v T T w = v v + B v T T x
354 353 fveq2d w = x u A B if u = B A u v v + B v T T w = u A B if u = B A u v v + B v T T x
355 354 eqcomd w = x u A B if u = B A u v v + B v T T x = u A B if u = B A u v v + B v T T w
356 355 breq2d w = x Q t u A B if u = B A u v v + B v T T x Q t u A B if u = B A u v v + B v T T w
357 356 rabbidv w = x t 0 ..^ M | Q t u A B if u = B A u v v + B v T T x = t 0 ..^ M | Q t u A B if u = B A u v v + B v T T w
358 352 357 syl5req w = x t 0 ..^ M | Q t u A B if u = B A u v v + B v T T w = i 0 ..^ M | Q i u A B if u = B A u v v + B v T T x
359 358 supeq1d w = x sup t 0 ..^ M | Q t u A B if u = B A u v v + B v T T w < = sup i 0 ..^ M | Q i u A B if u = B A u v v + B v T T x <
360 359 cbvmptv w sup t 0 ..^ M | Q t u A B if u = B A u v v + B v T T w < = x sup i 0 ..^ M | Q i u A B if u = B A u v v + B v T T x <
361 3 6 7 8 217 304 320 11 12 321 327 329 335 342 346 13 347 348 349 360 fourierdlem90 φ H V J V J + 1 : V J V J + 1 cn
362 216 361 eqeltrd φ G V J V J + 1 : V J V J + 1 cn