| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem64.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 2 |
|
fourierdlem64.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 3 |
|
fourierdlem64.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem64.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem64.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
|
fourierdlem64.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 7 |
|
fourierdlem64.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 8 |
|
fourierdlem64.h |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 9 |
|
fourierdlem64.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
| 10 |
|
fourierdlem64.v |
⊢ 𝑉 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 11 |
|
fourierdlem64.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
| 12 |
|
fourierdlem64.l |
⊢ 𝐿 = sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
| 13 |
|
fourierdlem64.i |
⊢ 𝐼 = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) |
| 14 |
|
ssrab2 |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ( 0 ..^ 𝑀 ) |
| 15 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
| 16 |
|
fzssz |
⊢ ( 0 ... 𝑀 ) ⊆ ℤ |
| 17 |
15 16
|
sstri |
⊢ ( 0 ..^ 𝑀 ) ⊆ ℤ |
| 18 |
14 17
|
sstri |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ ) |
| 20 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 21 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 23 |
|
fzolb |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
| 24 |
20 21 22 23
|
syl3anbrc |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
| 25 |
|
ssrab2 |
⊢ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ ) |
| 27 |
|
prssi |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → { 𝐶 , 𝐷 } ⊆ ℝ ) |
| 28 |
5 6 27
|
syl2anc |
⊢ ( 𝜑 → { 𝐶 , 𝐷 } ⊆ ℝ ) |
| 29 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ⊆ ( 𝐶 [,] 𝐷 ) |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 31 |
5 6
|
iccssred |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
| 32 |
30 31
|
sstrd |
⊢ ( 𝜑 → { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ⊆ ℝ ) |
| 33 |
28 32
|
unssd |
⊢ ( 𝜑 → ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ⊆ ℝ ) |
| 34 |
8 33
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ℝ ) |
| 35 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 36 |
1 2 3 4 5 6 7 35 8 9 10
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑉 ∈ ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑁 ) ) ∧ 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
| 37 |
36
|
simprd |
⊢ ( 𝜑 → 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 38 |
|
isof1o |
⊢ ( 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) → 𝑉 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 ) |
| 39 |
|
f1of |
⊢ ( 𝑉 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 → 𝑉 : ( 0 ... 𝑁 ) ⟶ 𝐻 ) |
| 40 |
37 38 39
|
3syl |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑁 ) ⟶ 𝐻 ) |
| 41 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 42 |
11 41
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 43 |
40 42
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐽 ) ∈ 𝐻 ) |
| 44 |
34 43
|
sseldd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 45 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 46 |
3 45
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 47 |
4 46
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 48 |
47
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 49 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 51 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 52 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 53 |
51 52
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 54 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 56 |
50 55
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 57 |
44 56
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ∈ ℝ ) |
| 58 |
2 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 59 |
58
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 60 |
58
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 61 |
59 60
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 62 |
1 61
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 63 |
58
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 64 |
60 59
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 65 |
63 64
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 66 |
65 1
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 67 |
66
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 68 |
57 62 67
|
redivcld |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ∈ ℝ ) |
| 69 |
|
btwnz |
⊢ ( ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ∈ ℝ → ( ∃ 𝑘 ∈ ℤ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ∧ ∃ 𝑧 ∈ ℤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) < 𝑧 ) ) |
| 70 |
68 69
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℤ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ∧ ∃ 𝑧 ∈ ℤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) < 𝑧 ) ) |
| 71 |
70
|
simpld |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 72 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
| 73 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 74 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → 𝑘 ∈ ℝ ) |
| 75 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → 𝑇 ∈ ℝ ) |
| 76 |
74 75
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 77 |
73 76
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
| 78 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 80 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ∈ ℝ ) |
| 81 |
62 66
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → 𝑇 ∈ ℝ+ ) |
| 83 |
74 80 82
|
ltmuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( 𝑘 · 𝑇 ) < ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ↔ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) ) |
| 84 |
79 83
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) < ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ) |
| 85 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 86 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
| 87 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 88 |
86 87
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
| 89 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 90 |
85 88 89
|
ltaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) < ( 𝑉 ‘ 𝐽 ) ↔ ( 𝑘 · 𝑇 ) < ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) < ( 𝑉 ‘ 𝐽 ) ↔ ( 𝑘 · 𝑇 ) < ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ) ) |
| 92 |
84 91
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) < ( 𝑉 ‘ 𝐽 ) ) |
| 93 |
77 78 92
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 95 |
72 94
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 96 |
95
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℤ 𝑘 < ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) → ∃ 𝑘 ∈ ℤ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 97 |
71 96
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 98 |
|
rabn0 |
⊢ ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ↔ ∃ 𝑘 ∈ ℤ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 99 |
97 98
|
sylibr |
⊢ ( 𝜑 → { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ) |
| 100 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → 𝜑 ) |
| 101 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → 𝑗 ∈ ℤ ) |
| 102 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 · 𝑇 ) = ( 𝑗 · 𝑇 ) ) |
| 103 |
102
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ) |
| 104 |
103
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 105 |
104
|
elrab |
⊢ ( 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 106 |
105
|
simprbi |
⊢ ( 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } → ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 108 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 109 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 110 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 111 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → 𝑗 ∈ ℝ ) |
| 112 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 113 |
111 112
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑗 · 𝑇 ) ∈ ℝ ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝑗 · 𝑇 ) ∈ ℝ ) |
| 115 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 116 |
110 114 115
|
leaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( 𝑗 · 𝑇 ) ≤ ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ) ) |
| 117 |
109 116
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝑗 · 𝑇 ) ≤ ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ) |
| 118 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → 𝑗 ∈ ℝ ) |
| 119 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ∈ ℝ ) |
| 120 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → 𝑇 ∈ ℝ+ ) |
| 121 |
118 119 120
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑗 · 𝑇 ) ≤ ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) ↔ 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) ) |
| 122 |
117 121
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 123 |
108 122
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝑗 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 124 |
100 101 107 123
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 125 |
124
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) |
| 126 |
|
breq2 |
⊢ ( 𝑏 = ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) → ( 𝑗 ≤ 𝑏 ↔ 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) ) |
| 127 |
126
|
ralbidv |
⊢ ( 𝑏 = ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) → ( ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ↔ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) ) |
| 128 |
127
|
rspcev |
⊢ ( ( ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ∈ ℝ ∧ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ ( ( ( 𝑉 ‘ 𝐽 ) − ( 𝑄 ‘ 0 ) ) / 𝑇 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ) |
| 129 |
68 125 128
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ) |
| 130 |
|
suprzcl |
⊢ ( ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ ∧ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ) → sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 131 |
26 99 129 130
|
syl3anc |
⊢ ( 𝜑 → sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 132 |
12 131
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 133 |
|
oveq1 |
⊢ ( 𝑘 = 𝐿 → ( 𝑘 · 𝑇 ) = ( 𝐿 · 𝑇 ) ) |
| 134 |
133
|
oveq2d |
⊢ ( 𝑘 = 𝐿 → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ) |
| 135 |
134
|
breq1d |
⊢ ( 𝑘 = 𝐿 → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 136 |
135
|
elrab |
⊢ ( 𝐿 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( 𝐿 ∈ ℤ ∧ ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 137 |
132 136
|
sylib |
⊢ ( 𝜑 → ( 𝐿 ∈ ℤ ∧ ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 138 |
137
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 0 ) ) |
| 140 |
139
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑗 = 0 → ( ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 142 |
141
|
elrab |
⊢ ( 0 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 0 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 143 |
24 138 142
|
sylanbrc |
⊢ ( 𝜑 → 0 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 144 |
|
ne0i |
⊢ ( 0 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ) |
| 145 |
143 144
|
syl |
⊢ ( 𝜑 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ) |
| 146 |
3
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 147 |
14
|
a1i |
⊢ ( 𝜑 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ( 0 ..^ 𝑀 ) ) |
| 148 |
147
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 149 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → 𝑘 ∈ ℤ ) |
| 150 |
149
|
zred |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → 𝑘 ∈ ℝ ) |
| 151 |
150
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑘 ∈ ℝ ) |
| 152 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 153 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → 𝑘 < 𝑀 ) |
| 154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑘 < 𝑀 ) |
| 155 |
151 152 154
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑘 ≤ 𝑀 ) |
| 156 |
148 155
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → 𝑘 ≤ 𝑀 ) |
| 157 |
156
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑀 ) |
| 158 |
|
breq2 |
⊢ ( 𝑏 = 𝑀 → ( 𝑘 ≤ 𝑏 ↔ 𝑘 ≤ 𝑀 ) ) |
| 159 |
158
|
ralbidv |
⊢ ( 𝑏 = 𝑀 → ( ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ↔ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑀 ) ) |
| 160 |
159
|
rspcev |
⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑀 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ) |
| 161 |
146 157 160
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ) |
| 162 |
|
suprzcl |
⊢ ( ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℤ ∧ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ) → sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 163 |
19 145 161 162
|
syl3anc |
⊢ ( 𝜑 → sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 164 |
14 163
|
sselid |
⊢ ( 𝜑 → sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ) |
| 165 |
13 164
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
| 166 |
25 131
|
sselid |
⊢ ( 𝜑 → sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ∈ ℤ ) |
| 167 |
12 166
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 168 |
15 165
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
| 169 |
50 168
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐼 ) ∈ ℝ ) |
| 170 |
167
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 171 |
170 62
|
remulcld |
⊢ ( 𝜑 → ( 𝐿 · 𝑇 ) ∈ ℝ ) |
| 172 |
169 171
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 173 |
172
|
rexrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ* ) |
| 174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ* ) |
| 175 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 176 |
165 175
|
syl |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 177 |
50 176
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℝ ) |
| 178 |
177 171
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 179 |
178
|
rexrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ* ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ* ) |
| 181 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
| 182 |
181
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 183 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 184 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 185 |
13 163
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 186 |
|
fveq2 |
⊢ ( 𝑗 = 𝐼 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝐼 ) ) |
| 187 |
186
|
oveq1d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ) |
| 188 |
187
|
breq1d |
⊢ ( 𝑗 = 𝐼 → ( ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 189 |
188
|
elrab |
⊢ ( 𝐼 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 190 |
185 189
|
sylib |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 191 |
190
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 192 |
191
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 193 |
184
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ* ) |
| 194 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 195 |
11 194
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 196 |
40 195
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ 𝐻 ) |
| 197 |
34 196
|
sseldd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 198 |
197
|
rexrd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
| 199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
| 200 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
| 201 |
|
ioogtlb |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) ∈ ℝ* ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ 𝐽 ) < 𝑥 ) |
| 202 |
193 199 200 201
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ 𝐽 ) < 𝑥 ) |
| 203 |
183 184 182 192 202
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) < 𝑥 ) |
| 204 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 205 |
25 204
|
sstri |
⊢ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ |
| 206 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ ) |
| 207 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ) |
| 208 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ) |
| 209 |
167
|
peano2zd |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℤ ) |
| 210 |
209
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐿 + 1 ) ∈ ℤ ) |
| 211 |
|
oveq1 |
⊢ ( 𝐼 = ( 𝑀 − 1 ) → ( 𝐼 + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 212 |
146
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 213 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 214 |
212 213
|
npcand |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 215 |
211 214
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝐼 + 1 ) = 𝑀 ) |
| 216 |
215
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) = ( 𝑄 ‘ 𝑀 ) ) |
| 217 |
47
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 218 |
217
|
simpld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
| 219 |
218
|
simprd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 220 |
219
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 221 |
59
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 222 |
60
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 223 |
221 222
|
npcand |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 224 |
223
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( ( 𝐵 − 𝐴 ) + 𝐴 ) ) |
| 225 |
1
|
eqcomi |
⊢ ( 𝐵 − 𝐴 ) = 𝑇 |
| 226 |
225
|
a1i |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = 𝑇 ) |
| 227 |
226
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = ( 𝑇 + 𝐴 ) ) |
| 228 |
218
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 229 |
228
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 230 |
229
|
oveq2d |
⊢ ( 𝜑 → ( 𝑇 + 𝐴 ) = ( 𝑇 + ( 𝑄 ‘ 0 ) ) ) |
| 231 |
224 227 230
|
3eqtrd |
⊢ ( 𝜑 → 𝐵 = ( 𝑇 + ( 𝑄 ‘ 0 ) ) ) |
| 232 |
231
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → 𝐵 = ( 𝑇 + ( 𝑄 ‘ 0 ) ) ) |
| 233 |
216 220 232
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) = ( 𝑇 + ( 𝑄 ‘ 0 ) ) ) |
| 234 |
62
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 235 |
228 222
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℂ ) |
| 236 |
234 235
|
addcomd |
⊢ ( 𝜑 → ( 𝑇 + ( 𝑄 ‘ 0 ) ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑇 + ( 𝑄 ‘ 0 ) ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 238 |
233 237
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 239 |
238
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( ( ( 𝑄 ‘ 0 ) + 𝑇 ) + ( 𝐿 · 𝑇 ) ) ) |
| 240 |
171
|
recnd |
⊢ ( 𝜑 → ( 𝐿 · 𝑇 ) ∈ ℂ ) |
| 241 |
235 234 240
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) + 𝑇 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( 𝑇 + ( 𝐿 · 𝑇 ) ) ) ) |
| 242 |
234
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑇 ) = 𝑇 ) |
| 243 |
242 234
|
eqeltrd |
⊢ ( 𝜑 → ( 1 · 𝑇 ) ∈ ℂ ) |
| 244 |
243 240
|
addcomd |
⊢ ( 𝜑 → ( ( 1 · 𝑇 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝐿 · 𝑇 ) + ( 1 · 𝑇 ) ) ) |
| 245 |
242
|
eqcomd |
⊢ ( 𝜑 → 𝑇 = ( 1 · 𝑇 ) ) |
| 246 |
245
|
oveq1d |
⊢ ( 𝜑 → ( 𝑇 + ( 𝐿 · 𝑇 ) ) = ( ( 1 · 𝑇 ) + ( 𝐿 · 𝑇 ) ) ) |
| 247 |
170
|
recnd |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 248 |
247 213 234
|
adddird |
⊢ ( 𝜑 → ( ( 𝐿 + 1 ) · 𝑇 ) = ( ( 𝐿 · 𝑇 ) + ( 1 · 𝑇 ) ) ) |
| 249 |
244 246 248
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑇 + ( 𝐿 · 𝑇 ) ) = ( ( 𝐿 + 1 ) · 𝑇 ) ) |
| 250 |
249
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + ( 𝑇 + ( 𝐿 · 𝑇 ) ) ) = ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ) |
| 251 |
241 250
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) + 𝑇 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ) |
| 252 |
251
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( ( ( 𝑄 ‘ 0 ) + 𝑇 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ) |
| 253 |
239 252
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 254 |
253
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 255 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 256 |
254 255
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 257 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐿 + 1 ) → ( 𝑘 · 𝑇 ) = ( ( 𝐿 + 1 ) · 𝑇 ) ) |
| 258 |
257
|
oveq2d |
⊢ ( 𝑘 = ( 𝐿 + 1 ) → ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) = ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ) |
| 259 |
258
|
breq1d |
⊢ ( 𝑘 = ( 𝐿 + 1 ) → ( ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 260 |
259
|
elrab |
⊢ ( ( 𝐿 + 1 ) ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( ( 𝐿 + 1 ) ∈ ℤ ∧ ( ( 𝑄 ‘ 0 ) + ( ( 𝐿 + 1 ) · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 261 |
210 256 260
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐿 + 1 ) ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 262 |
|
suprub |
⊢ ( ( ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ ∧ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑗 ≤ 𝑏 ) ∧ ( 𝐿 + 1 ) ∈ { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → ( 𝐿 + 1 ) ≤ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ) |
| 263 |
206 207 208 261 262
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐿 + 1 ) ≤ sup ( { 𝑘 ∈ ℤ ∣ ( ( 𝑄 ‘ 0 ) + ( 𝑘 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ) |
| 264 |
263 12
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐿 + 1 ) ≤ 𝐿 ) |
| 265 |
170
|
ltp1d |
⊢ ( 𝜑 → 𝐿 < ( 𝐿 + 1 ) ) |
| 266 |
|
peano2re |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 1 ) ∈ ℝ ) |
| 267 |
170 266
|
syl |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℝ ) |
| 268 |
170 267
|
ltnled |
⊢ ( 𝜑 → ( 𝐿 < ( 𝐿 + 1 ) ↔ ¬ ( 𝐿 + 1 ) ≤ 𝐿 ) ) |
| 269 |
265 268
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐿 + 1 ) ≤ 𝐿 ) |
| 270 |
269
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ¬ ( 𝐿 + 1 ) ≤ 𝐿 ) |
| 271 |
264 270
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝐼 = ( 𝑀 − 1 ) ) → ¬ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 272 |
17 165
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 273 |
272
|
zred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
| 274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → 𝐼 ∈ ℝ ) |
| 275 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 276 |
146 275
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 278 |
|
elfzolt2 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 < 𝑀 ) |
| 279 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ℤ ) |
| 280 |
|
elfzoel2 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 281 |
|
zltlem1 |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐼 < 𝑀 ↔ 𝐼 ≤ ( 𝑀 − 1 ) ) ) |
| 282 |
279 280 281
|
syl2anc |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 < 𝑀 ↔ 𝐼 ≤ ( 𝑀 − 1 ) ) ) |
| 283 |
278 282
|
mpbid |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ≤ ( 𝑀 − 1 ) ) |
| 284 |
165 283
|
syl |
⊢ ( 𝜑 → 𝐼 ≤ ( 𝑀 − 1 ) ) |
| 285 |
284
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → 𝐼 ≤ ( 𝑀 − 1 ) ) |
| 286 |
|
neqne |
⊢ ( ¬ 𝐼 = ( 𝑀 − 1 ) → 𝐼 ≠ ( 𝑀 − 1 ) ) |
| 287 |
286
|
necomd |
⊢ ( ¬ 𝐼 = ( 𝑀 − 1 ) → ( 𝑀 − 1 ) ≠ 𝐼 ) |
| 288 |
287
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → ( 𝑀 − 1 ) ≠ 𝐼 ) |
| 289 |
274 277 285 288
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → 𝐼 < ( 𝑀 − 1 ) ) |
| 290 |
18 204
|
sstri |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ |
| 291 |
290
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ ) |
| 292 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ) |
| 293 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ) |
| 294 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 295 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → 𝐼 ∈ ℝ ) |
| 296 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 297 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → 1 ∈ ℝ ) |
| 298 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → 𝐼 < ( 𝑀 − 1 ) ) |
| 299 |
295 296 297 298
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( 𝐼 + 1 ) < ( ( 𝑀 − 1 ) + 1 ) ) |
| 300 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 301 |
299 300
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( 𝐼 + 1 ) < 𝑀 ) |
| 302 |
|
elfzfzo |
⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( 𝐼 + 1 ) < 𝑀 ) ) |
| 303 |
294 301 302
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 304 |
303
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 305 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐼 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
| 306 |
305
|
oveq1d |
⊢ ( 𝑗 = ( 𝐼 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 307 |
306
|
breq1d |
⊢ ( 𝑗 = ( 𝐼 + 1 ) → ( ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ↔ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 308 |
307
|
elrab |
⊢ ( ( 𝐼 + 1 ) ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ↔ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 309 |
304 308
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐼 + 1 ) ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) |
| 310 |
|
suprub |
⊢ ( ( ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ⊆ ℝ ∧ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ≠ ∅ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑘 ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } 𝑘 ≤ 𝑏 ) ∧ ( 𝐼 + 1 ) ∈ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } ) → ( 𝐼 + 1 ) ≤ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ) |
| 311 |
291 292 293 309 310
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐼 + 1 ) ≤ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( ( 𝑄 ‘ 𝑗 ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) } , ℝ , < ) ) |
| 312 |
311 13
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ( 𝐼 + 1 ) ≤ 𝐼 ) |
| 313 |
273
|
ltp1d |
⊢ ( 𝜑 → 𝐼 < ( 𝐼 + 1 ) ) |
| 314 |
|
peano2re |
⊢ ( 𝐼 ∈ ℝ → ( 𝐼 + 1 ) ∈ ℝ ) |
| 315 |
273 314
|
syl |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℝ ) |
| 316 |
273 315
|
ltnled |
⊢ ( 𝜑 → ( 𝐼 < ( 𝐼 + 1 ) ↔ ¬ ( 𝐼 + 1 ) ≤ 𝐼 ) ) |
| 317 |
313 316
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐼 + 1 ) ≤ 𝐼 ) |
| 318 |
317
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) → ¬ ( 𝐼 + 1 ) ≤ 𝐼 ) |
| 319 |
312 318
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝐼 < ( 𝑀 − 1 ) ) → ¬ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 320 |
289 319
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 = ( 𝑀 − 1 ) ) → ¬ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 321 |
271 320
|
pm2.61dan |
⊢ ( 𝜑 → ¬ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 322 |
44 178
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ↔ ¬ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ ( 𝑉 ‘ 𝐽 ) ) ) |
| 323 |
321 322
|
mpbird |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 324 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 325 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐷 ∈ ℝ ) |
| 326 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 327 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 328 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 329 |
5 6 7
|
ltled |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 330 |
|
lbicc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 331 |
327 328 329 330
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 332 |
|
ubicc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 333 |
327 328 329 332
|
syl3anc |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 334 |
331 333
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ∧ 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 335 |
|
prssg |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ∧ 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐶 [,] 𝐷 ) ) ) |
| 336 |
5 6 335
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ∧ 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐶 [,] 𝐷 ) ) ) |
| 337 |
334 336
|
mpbid |
⊢ ( 𝜑 → { 𝐶 , 𝐷 } ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 338 |
337 30
|
unssd |
⊢ ( 𝜑 → ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 339 |
8 338
|
eqsstrid |
⊢ ( 𝜑 → 𝐻 ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 340 |
339 196
|
sseldd |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 341 |
|
iccleub |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
| 342 |
327 328 340 341
|
syl3anc |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
| 343 |
342
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
| 344 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 345 |
324 325 326 343 344
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 346 |
345
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 347 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 348 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 349 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐷 ∈ ℝ ) |
| 350 |
348 349
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ↔ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 351 |
347 350
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) |
| 352 |
351
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) |
| 353 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 354 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 355 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 356 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 357 |
355 356
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ↔ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 358 |
354 357
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 359 |
358
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 360 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → 𝐶 ∈ ℝ ) |
| 361 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → 𝐷 ∈ ℝ ) |
| 362 |
178
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 363 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐶 ∈ ℝ ) |
| 364 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 365 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) ∈ ℝ ) |
| 366 |
339 43
|
sseldd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐽 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 367 |
|
iccgelb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ ( 𝑉 ‘ 𝐽 ) ∈ ( 𝐶 [,] 𝐷 ) ) → 𝐶 ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 368 |
327 328 366 367
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐶 ≤ ( 𝑉 ‘ 𝐽 ) ) |
| 370 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 371 |
363 365 364 369 370
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐶 < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 372 |
363 364 371
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐶 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 373 |
372
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → 𝐶 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 374 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 375 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → 𝐷 ∈ ℝ ) |
| 376 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) |
| 377 |
374 375 376
|
ltled |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ 𝐷 ) |
| 378 |
377
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ≤ 𝐷 ) |
| 379 |
360 361 362 373 378
|
eliccd |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 380 |
167
|
znegcld |
⊢ ( 𝜑 → - 𝐿 ∈ ℤ ) |
| 381 |
247 234
|
mulneg1d |
⊢ ( 𝜑 → ( - 𝐿 · 𝑇 ) = - ( 𝐿 · 𝑇 ) ) |
| 382 |
381
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) = ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + - ( 𝐿 · 𝑇 ) ) ) |
| 383 |
178
|
recnd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℂ ) |
| 384 |
383 240
|
negsubd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + - ( 𝐿 · 𝑇 ) ) = ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) − ( 𝐿 · 𝑇 ) ) ) |
| 385 |
177
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ℂ ) |
| 386 |
385 240
|
pncand |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) − ( 𝐿 · 𝑇 ) ) = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
| 387 |
382 384 386
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
| 388 |
|
ffn |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 389 |
50 388
|
syl |
⊢ ( 𝜑 → 𝑄 Fn ( 0 ... 𝑀 ) ) |
| 390 |
|
fnfvelrn |
⊢ ( ( 𝑄 Fn ( 0 ... 𝑀 ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ran 𝑄 ) |
| 391 |
389 176 390
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ∈ ran 𝑄 ) |
| 392 |
387 391
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 393 |
|
oveq1 |
⊢ ( 𝑘 = - 𝐿 → ( 𝑘 · 𝑇 ) = ( - 𝐿 · 𝑇 ) ) |
| 394 |
393
|
oveq2d |
⊢ ( 𝑘 = - 𝐿 → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) ) |
| 395 |
394
|
eleq1d |
⊢ ( 𝑘 = - 𝐿 → ( ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 396 |
395
|
rspcev |
⊢ ( ( - 𝐿 ∈ ℤ ∧ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( - 𝐿 · 𝑇 ) ) ∈ ran 𝑄 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 397 |
380 392 396
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 398 |
397
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 399 |
|
oveq1 |
⊢ ( 𝑦 = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ) |
| 400 |
399
|
eleq1d |
⊢ ( 𝑦 = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 401 |
400
|
rexbidv |
⊢ ( 𝑦 = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 402 |
401
|
elrab |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ↔ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ( 𝐶 [,] 𝐷 ) ∧ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 403 |
379 398 402
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 404 |
|
elun2 |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 405 |
403 404
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 406 |
8
|
eqcomi |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = 𝐻 |
| 407 |
405 406
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) |
| 408 |
407
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) |
| 409 |
|
f1ofo |
⊢ ( 𝑉 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 → 𝑉 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
| 410 |
37 38 409
|
3syl |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
| 411 |
|
foelrn |
⊢ ( ( 𝑉 : ( 0 ... 𝑁 ) –onto→ 𝐻 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) ) |
| 412 |
410 411
|
sylan |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) ) |
| 413 |
|
id |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) ) |
| 414 |
413
|
eqcomd |
⊢ ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) → ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 415 |
414
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) → ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 416 |
415
|
reximdv |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 417 |
412 416
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 418 |
417
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 419 |
|
simpl |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 420 |
413
|
eqcoms |
⊢ ( ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) ) |
| 421 |
420
|
adantl |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) = ( 𝑉 ‘ 𝑗 ) ) |
| 422 |
419 421
|
breqtrd |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) < ( 𝑉 ‘ 𝑗 ) ) |
| 423 |
422
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) < ( 𝑉 ‘ 𝑗 ) ) |
| 424 |
423
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝐽 ) < ( 𝑉 ‘ 𝑗 ) ) |
| 425 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 426 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 427 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 428 |
|
isorel |
⊢ ( ( 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝐽 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑉 ‘ 𝐽 ) < ( 𝑉 ‘ 𝑗 ) ) ) |
| 429 |
425 426 427 428
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑉 ‘ 𝐽 ) < ( 𝑉 ‘ 𝑗 ) ) ) |
| 430 |
424 429
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐽 < 𝑗 ) |
| 431 |
430
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝐽 < 𝑗 ) |
| 432 |
|
simpr |
⊢ ( ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 433 |
|
simpl |
⊢ ( ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 434 |
432 433
|
eqbrtrd |
⊢ ( ( ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝑗 ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 435 |
434
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝑗 ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 436 |
435
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ 𝑗 ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 437 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 438 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 439 |
195
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 440 |
|
isorel |
⊢ ( ( 𝑉 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑉 ‘ 𝑗 ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
| 441 |
437 438 439 440
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑉 ‘ 𝑗 ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) |
| 442 |
436 441
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
| 443 |
442
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
| 444 |
431 443
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 445 |
444
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) ) |
| 446 |
445
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) ) |
| 447 |
446
|
reximdva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑉 ‘ 𝑗 ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) ) |
| 448 |
418 447
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 449 |
353 359 408 448
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 450 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 451 |
450
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 452 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 0 ... 𝑁 ) → 𝐽 ∈ ℤ ) |
| 453 |
42 452
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 454 |
453
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) → 𝐽 ∈ ℤ ) |
| 455 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) → 𝐽 < 𝑗 ) |
| 456 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
| 457 |
|
btwnnz |
⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) → ¬ 𝑗 ∈ ℤ ) |
| 458 |
454 455 456 457
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) → ¬ 𝑗 ∈ ℤ ) |
| 459 |
451 458
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 460 |
459
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 461 |
460
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) ∧ ¬ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) ) |
| 462 |
449 461
|
condan |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) < 𝐷 ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 463 |
352 462
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ∧ ¬ 𝐷 ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 464 |
346 463
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑉 ‘ 𝐽 ) < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 465 |
323 464
|
mpdan |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 466 |
465
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 467 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 468 |
197
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 469 |
178
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ∈ ℝ ) |
| 470 |
|
iooltub |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) ∈ ℝ* ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 471 |
193 199 200 470
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 472 |
471
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑥 < ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) |
| 473 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 474 |
467 468 469 472 473
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑉 ‘ ( 𝐽 + 1 ) ) ≤ ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 475 |
466 474
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 476 |
174 180 182 203 475
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 477 |
476
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑥 ∈ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 478 |
|
dfss3 |
⊢ ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ↔ ∀ 𝑥 ∈ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) 𝑥 ∈ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 479 |
477 478
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 480 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝐼 ) ) |
| 481 |
480
|
oveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) = ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) ) |
| 482 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 + 1 ) = ( 𝐼 + 1 ) ) |
| 483 |
482
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
| 484 |
483
|
oveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) |
| 485 |
481 484
|
oveq12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 486 |
485
|
sseq2d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ↔ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ) |
| 487 |
|
oveq1 |
⊢ ( 𝑙 = 𝐿 → ( 𝑙 · 𝑇 ) = ( 𝐿 · 𝑇 ) ) |
| 488 |
487
|
oveq2d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) = ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) ) |
| 489 |
487
|
oveq2d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) = ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) |
| 490 |
488 489
|
oveq12d |
⊢ ( 𝑙 = 𝐿 → ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) = ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) |
| 491 |
490
|
sseq2d |
⊢ ( 𝑙 = 𝐿 → ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ↔ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) ) |
| 492 |
486 491
|
rspc2ev |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐿 ∈ ℤ ∧ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝐼 ) + ( 𝐿 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝐼 + 1 ) ) + ( 𝐿 · 𝑇 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 493 |
165 167 479 492
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) |
| 494 |
165 167 493
|
jca31 |
⊢ ( 𝜑 → ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐿 ∈ ℤ ) ∧ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∃ 𝑙 ∈ ℤ ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) + ( 𝑙 · 𝑇 ) ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + ( 𝑙 · 𝑇 ) ) ) ) ) |