| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem98.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | fourierdlem98.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 3 |  | fourierdlem98.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 4 |  | fourierdlem98.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | fourierdlem98.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 6 |  | fourierdlem98.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | fourierdlem98.qcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 8 |  | fourierdlem98.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 9 |  | fourierdlem98.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 (,) +∞ ) ) | 
						
							| 10 |  | fourierdlem98.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ..^ ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ) | 
						
							| 11 |  | fourierdlem98.v | ⊢ 𝑉  =  ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 12 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 14 | 1 13 | fssd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐶  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐶  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑙  ·  𝑇 ) ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 18 | 17 | rexbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑙  ∈  ℤ ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 19 | 18 | cbvrabv | ⊢ { 𝑧  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 20 | 19 | uneq2i | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑧  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 21 | 20 | eqcomi | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑧  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑧  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑘  =  𝑙  →  ( 𝑘  ·  𝑇 )  =  ( 𝑙  ·  𝑇 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑘  =  𝑙  →  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑙  ·  𝑇 ) ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑦  ∈  ( 𝐶 [,] 𝐷 )  →  ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 27 | 26 | rabbiia | ⊢ { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 28 | 27 | uneq2i | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 29 | 28 | fveq2i | ⊢ ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  =  ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) | 
						
							| 30 | 29 | oveq1i | ⊢ ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑙  =  ℎ  →  ( 𝑙  ·  𝑇 )  =  ( ℎ  ·  𝑇 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑙  =  ℎ  →  ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  =  ( 𝑦  +  ( ℎ  ·  𝑇 ) ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝑙  =  ℎ  →  ( ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 34 | 33 | cbvrexvw | ⊢ ( ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝑦  ∈  ( 𝐶 [,] 𝐷 )  →  ( ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 36 | 35 | rabbiia | ⊢ { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 37 | 36 | uneq2i | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 38 |  | isoeq5 | ⊢ ( ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 40 | 39 | iotabii | ⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ ℎ  ∈  ℤ ( 𝑦  +  ( ℎ  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 41 |  | isoeq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 42 | 41 | cbviotavw | ⊢ ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 43 | 40 42 11 | 3eqtr4ri | ⊢ 𝑉  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑦  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 44 |  | id | ⊢ ( 𝑣  =  𝑥  →  𝑣  =  𝑥 ) | 
						
							| 45 |  | oveq2 | ⊢ ( 𝑣  =  𝑥  →  ( 𝐵  −  𝑣 )  =  ( 𝐵  −  𝑥 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝑣  =  𝑥  →  ( ( 𝐵  −  𝑣 )  /  𝑇 )  =  ( ( 𝐵  −  𝑥 )  /  𝑇 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝑣  =  𝑥  →  ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑣  =  𝑥  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 49 | 44 48 | oveq12d | ⊢ ( 𝑣  =  𝑥  →  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 50 | 49 | cbvmptv | ⊢ ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 51 |  | eqeq1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  =  𝐵  ↔  𝑧  =  𝐵 ) ) | 
						
							| 52 |  | id | ⊢ ( 𝑢  =  𝑧  →  𝑢  =  𝑧 ) | 
						
							| 53 | 51 52 | ifbieq2d | ⊢ ( 𝑢  =  𝑧  →  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 )  =  if ( 𝑧  =  𝐵 ,  𝐴 ,  𝑧 ) ) | 
						
							| 54 | 53 | cbvmptv | ⊢ ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) )  =  ( 𝑧  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑧  =  𝐵 ,  𝐴 ,  𝑧 ) ) | 
						
							| 55 |  | eqid | ⊢ ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) )  =  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( 𝐹  ↾  ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( 𝐹  ↾  ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑧  ∈  ( ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) )  +  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) (,) ( ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) )  +  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) ‘ ( 𝑧  −  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) ) )  =  ( 𝑧  ∈  ( ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) )  +  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) (,) ( ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) )  +  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ 𝐽 ) ) ) (,) ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) ‘ ( 𝑧  −  ( ( 𝑉 ‘ ( 𝐽  +  1 ) )  −  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) ) ) ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑖  =  𝑡  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑡 ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( 𝑖  =  𝑡  →  ( ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  ↔  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 60 | 59 | cbvrabv | ⊢ { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) }  =  { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 )  =  ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) )  =  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) | 
						
							| 63 | 62 | eqcomd | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  =  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) ) | 
						
							| 64 | 63 | breq2d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  ↔  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) ) ) | 
						
							| 65 | 64 | rabbidv | ⊢ ( 𝑤  =  𝑥  →  { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) }  =  { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) } ) | 
						
							| 66 | 60 65 | eqtr2id | ⊢ ( 𝑤  =  𝑥  →  { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ) | 
						
							| 67 | 66 | supeq1d | ⊢ ( 𝑤  =  𝑥  →  sup ( { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) } ,  ℝ ,   <  )  =  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 68 | 67 | cbvmptv | ⊢ ( 𝑤  ∈  ℝ  ↦  sup ( { 𝑡  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑤 ) ) } ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑢  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑢  =  𝐵 ,  𝐴 ,  𝑢 ) ) ‘ ( ( 𝑣  ∈  ℝ  ↦  ( 𝑣  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑣 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 69 | 2 3 4 5 14 6 7 8 9 15 21 30 43 50 54 10 55 56 57 68 | fourierdlem90 | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) )  ∈  ( ( ( 𝑉 ‘ 𝐽 ) (,) ( 𝑉 ‘ ( 𝐽  +  1 ) ) ) –cn→ ℂ ) ) |