| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem84.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem84.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem84.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 4 |
|
fourierdlem84.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
fourierdlem84.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 6 |
|
fourierdlem84.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
fourierdlem84.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 8 |
|
fourierdlem84.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 9 |
|
fourierdlem84.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
| 10 |
|
fourierdlem84.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 11 |
|
fourierdlem84.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 12 |
|
fourierdlem84.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 13 |
|
fourierdlem84.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ℝ –cn→ ℝ ) ) |
| 14 |
|
fourierdlem84.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) |
| 15 |
1 2 4 5 12 6 7 11
|
fourierdlem14 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑂 ‘ 𝑀 ) ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑋 ∈ ℝ ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 21 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℝ ) |
| 22 |
18 19 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℝ ) |
| 23 |
17 22
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 24 |
16 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 25 |
|
cncff |
⊢ ( 𝐷 ∈ ( ℝ –cn→ ℝ ) → 𝐷 : ℝ ⟶ ℝ ) |
| 26 |
13 25
|
syl |
⊢ ( 𝜑 → 𝐷 : ℝ ⟶ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 : ℝ ⟶ ℝ ) |
| 28 |
27 22
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐷 ‘ 𝑠 ) ∈ ℝ ) |
| 29 |
24 28
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ∈ ℂ ) |
| 31 |
30 14
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 32 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 = ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ) |
| 33 |
32
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 34 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
| 37 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
| 39 |
12 6 15
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 42 |
36 38 40 41
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 43 |
34 42
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 44 |
43
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ) |
| 45 |
33 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ) |
| 46 |
1 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑋 ) ∈ ℝ ) |
| 47 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑋 ) ∈ ℝ ) |
| 48 |
46 47
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ⊆ ℝ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ⊆ ℝ ) |
| 50 |
5 6 7
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ) |
| 52 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 54 |
51 53
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ) |
| 55 |
49 54
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 56 |
55
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
| 58 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 60 |
51 59
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝐴 + 𝑋 ) [,] ( 𝐵 + 𝑋 ) ) ) |
| 61 |
49 60
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 62 |
61
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 64 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 65 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 67 |
64 66
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 68 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
| 70 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 72 |
40 53
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 73 |
71 72
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 74 |
73
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
| 75 |
69 74
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) ) |
| 76 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 77 |
55 76
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 78 |
11
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 79 |
53 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 80 |
79
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) = ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) ) |
| 81 |
55
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
| 82 |
81 69
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) = ( 𝑉 ‘ 𝑖 ) ) |
| 83 |
75 80 82
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
| 85 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 86 |
73
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 88 |
40 71
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 89 |
88 59
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 90 |
89
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 92 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 93 |
|
ioogtlb |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
| 94 |
87 91 92 93
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑠 ) |
| 95 |
85 66 64 94
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) < ( 𝑋 + 𝑠 ) ) |
| 96 |
84 95
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑋 + 𝑠 ) ) |
| 97 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 98 |
|
iooltub |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 99 |
87 91 92 98
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 100 |
66 97 64 99
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 101 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑗 ) ) |
| 102 |
101
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 103 |
102
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 104 |
11 103
|
eqtri |
⊢ 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 105 |
104
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ) |
| 106 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑉 ‘ 𝑗 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 107 |
106
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 109 |
61 76
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 110 |
105 108 59 109
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 111 |
110
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 112 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 113 |
69 112
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 114 |
111 113
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 116 |
100 115
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 117 |
57 63 67 96 116
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 118 |
|
fvres |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 119 |
117 118
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 120 |
119
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) |
| 121 |
120
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 122 |
|
ioosscn |
⊢ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 123 |
122
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 124 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 125 |
124
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 126 |
123 8 125 69 117
|
fourierdlem23 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 127 |
121 126
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 128 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) |
| 129 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 130 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 131 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
| 132 |
129 130 131
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
| 133 |
26
|
feqmptd |
⊢ ( 𝜑 → 𝐷 = ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ) |
| 134 |
133
|
eqcomd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) = 𝐷 ) |
| 135 |
134 13
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℝ ) ) |
| 136 |
132 135
|
sselid |
⊢ ( 𝜑 → ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 138 |
43 71
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 139 |
130
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℂ ⊆ ℂ ) |
| 140 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐷 : ℝ ⟶ ℝ ) |
| 141 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 142 |
140 141
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑠 ) ∈ ℝ ) |
| 143 |
142
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑠 ) ∈ ℂ ) |
| 144 |
143
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑠 ) ∈ ℂ ) |
| 145 |
128 137 138 139 144
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 146 |
127 145
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 147 |
45 146
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 148 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
| 149 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) |
| 150 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) |
| 151 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 152 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 153 |
152 141
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 154 |
151 153
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 155 |
154
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 156 |
155
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 157 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 158 |
|
ioossre |
⊢ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 159 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 160 |
85 94
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ≠ ( 𝑄 ‘ 𝑖 ) ) |
| 161 |
83
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) ) |
| 162 |
9 161
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) ) |
| 163 |
157 76 138 148 117 159 160 162 74
|
fourierdlem53 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 164 |
|
limcresi |
⊢ ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) |
| 165 |
132 13
|
sselid |
⊢ ( 𝜑 → 𝐷 ∈ ( ℝ –cn→ ℂ ) ) |
| 166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐷 ∈ ( ℝ –cn→ ℂ ) ) |
| 167 |
166 73
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( 𝐷 limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 168 |
133
|
oveq1d |
⊢ ( 𝜑 → ( 𝐷 limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 170 |
167 169
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 171 |
164 170
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 172 |
138
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) ) |
| 173 |
172
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 174 |
171 173
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 175 |
148 149 150 156 144 163 174
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 176 |
14
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 177 |
176 44
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 178 |
177
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 179 |
175 178
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑅 · ( 𝐷 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 180 |
66 99
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 181 |
114
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 182 |
181
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 183 |
10 182
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 184 |
89
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 185 |
157 76 138 148 117 159 180 183 184
|
fourierdlem53 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 186 |
|
limcresi |
⊢ ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 187 |
166 89
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( 𝐷 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 188 |
133
|
oveq1d |
⊢ ( 𝜑 → ( 𝐷 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 189 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 190 |
187 189
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 191 |
186 190
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 192 |
172
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑠 ∈ ℝ ↦ ( 𝐷 ‘ 𝑠 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 193 |
191 192
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐷 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 194 |
148 149 150 156 144 185 193
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 195 |
177
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( 𝐷 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 196 |
194 195
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐿 · ( 𝐷 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 197 |
12 6 15 31 147 179 196
|
fourierdlem69 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |