| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem84.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem84.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem84.f |
|- ( ph -> F : RR --> RR ) |
| 4 |
|
fourierdlem84.xre |
|- ( ph -> X e. RR ) |
| 5 |
|
fourierdlem84.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + X ) /\ ( p ` m ) = ( B + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 6 |
|
fourierdlem84.m |
|- ( ph -> M e. NN ) |
| 7 |
|
fourierdlem84.v |
|- ( ph -> V e. ( P ` M ) ) |
| 8 |
|
fourierdlem84.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 9 |
|
fourierdlem84.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
| 10 |
|
fourierdlem84.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
| 11 |
|
fourierdlem84.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
| 12 |
|
fourierdlem84.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 13 |
|
fourierdlem84.d |
|- ( ph -> D e. ( RR -cn-> RR ) ) |
| 14 |
|
fourierdlem84.g |
|- G = ( s e. ( A [,] B ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) |
| 15 |
1 2 4 5 12 6 7 11
|
fourierdlem14 |
|- ( ph -> Q e. ( O ` M ) ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> F : RR --> RR ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> X e. RR ) |
| 18 |
1
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> A e. RR ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> B e. RR ) |
| 20 |
|
simpr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. ( A [,] B ) ) |
| 21 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ s e. ( A [,] B ) ) -> s e. RR ) |
| 22 |
18 19 20 21
|
syl3anc |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. RR ) |
| 23 |
17 22
|
readdcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( X + s ) e. RR ) |
| 24 |
16 23
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( F ` ( X + s ) ) e. RR ) |
| 25 |
|
cncff |
|- ( D e. ( RR -cn-> RR ) -> D : RR --> RR ) |
| 26 |
13 25
|
syl |
|- ( ph -> D : RR --> RR ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> D : RR --> RR ) |
| 28 |
27 22
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( D ` s ) e. RR ) |
| 29 |
24 28
|
remulcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( F ` ( X + s ) ) x. ( D ` s ) ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( F ` ( X + s ) ) x. ( D ` s ) ) e. CC ) |
| 31 |
30 14
|
fmptd |
|- ( ph -> G : ( A [,] B ) --> CC ) |
| 32 |
14
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G = ( s e. ( A [,] B ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) ) |
| 33 |
32
|
reseq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( A [,] B ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 34 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 35 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 37 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 39 |
12 6 15
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 41 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 42 |
36 38 40 41
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 43 |
34 42
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 44 |
43
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( A [,] B ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) ) |
| 45 |
33 44
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) ) |
| 46 |
1 4
|
readdcld |
|- ( ph -> ( A + X ) e. RR ) |
| 47 |
2 4
|
readdcld |
|- ( ph -> ( B + X ) e. RR ) |
| 48 |
46 47
|
iccssred |
|- ( ph -> ( ( A + X ) [,] ( B + X ) ) C_ RR ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( A + X ) [,] ( B + X ) ) C_ RR ) |
| 50 |
5 6 7
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( A + X ) [,] ( B + X ) ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> ( ( A + X ) [,] ( B + X ) ) ) |
| 52 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 54 |
51 53
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. ( ( A + X ) [,] ( B + X ) ) ) |
| 55 |
49 54
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
| 56 |
55
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR* ) |
| 57 |
56
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
| 58 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 60 |
51 59
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. ( ( A + X ) [,] ( B + X ) ) ) |
| 61 |
49 60
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
| 62 |
61
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
| 64 |
4
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
| 65 |
|
elioore |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. RR ) |
| 66 |
65
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
| 67 |
64 66
|
readdcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
| 68 |
4
|
recnd |
|- ( ph -> X e. CC ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
| 70 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A [,] B ) C_ RR ) |
| 72 |
40 53
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
| 73 |
71 72
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 74 |
73
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 75 |
69 74
|
addcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` i ) ) = ( ( Q ` i ) + X ) ) |
| 76 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
| 77 |
55 76
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
| 78 |
11
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 79 |
53 77 78
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 80 |
79
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + X ) = ( ( ( V ` i ) - X ) + X ) ) |
| 81 |
55
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. CC ) |
| 82 |
81 69
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( V ` i ) - X ) + X ) = ( V ` i ) ) |
| 83 |
75 80 82
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
| 85 |
73
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 86 |
73
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 87 |
86
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 88 |
40 71
|
fssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 89 |
88 59
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 90 |
89
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 91 |
90
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 92 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 93 |
|
ioogtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
| 94 |
87 91 92 93
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
| 95 |
85 66 64 94
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` i ) ) < ( X + s ) ) |
| 96 |
84 95
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
| 97 |
89
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 98 |
|
iooltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
| 99 |
87 91 92 98
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
| 100 |
66 97 64 99
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
| 101 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
| 102 |
101
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
| 103 |
102
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
| 104 |
11 103
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
| 105 |
104
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
| 106 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
| 107 |
106
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 108 |
107
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 109 |
61 76
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
| 110 |
105 108 59 109
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 111 |
110
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( X + ( ( V ` ( i + 1 ) ) - X ) ) ) |
| 112 |
61
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. CC ) |
| 113 |
69 112
|
pncan3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( ( V ` ( i + 1 ) ) - X ) ) = ( V ` ( i + 1 ) ) ) |
| 114 |
111 113
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
| 115 |
114
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
| 116 |
100 115
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
| 117 |
57 63 67 96 116
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
| 118 |
|
fvres |
|- ( ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
| 119 |
117 118
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
| 120 |
119
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) |
| 121 |
120
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) ) |
| 122 |
|
ioosscn |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ CC |
| 123 |
122
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ CC ) |
| 124 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
| 125 |
124
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 126 |
123 8 125 69 117
|
fourierdlem23 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 127 |
121 126
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 128 |
|
eqid |
|- ( s e. RR |-> ( D ` s ) ) = ( s e. RR |-> ( D ` s ) ) |
| 129 |
|
ax-resscn |
|- RR C_ CC |
| 130 |
|
ssid |
|- CC C_ CC |
| 131 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) |
| 132 |
129 130 131
|
mp2an |
|- ( RR -cn-> RR ) C_ ( RR -cn-> CC ) |
| 133 |
26
|
feqmptd |
|- ( ph -> D = ( s e. RR |-> ( D ` s ) ) ) |
| 134 |
133
|
eqcomd |
|- ( ph -> ( s e. RR |-> ( D ` s ) ) = D ) |
| 135 |
134 13
|
eqeltrd |
|- ( ph -> ( s e. RR |-> ( D ` s ) ) e. ( RR -cn-> RR ) ) |
| 136 |
132 135
|
sselid |
|- ( ph -> ( s e. RR |-> ( D ` s ) ) e. ( RR -cn-> CC ) ) |
| 137 |
136
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. RR |-> ( D ` s ) ) e. ( RR -cn-> CC ) ) |
| 138 |
43 71
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 139 |
130
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> CC C_ CC ) |
| 140 |
26
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> D : RR --> RR ) |
| 141 |
65
|
adantl |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
| 142 |
140 141
|
ffvelcdmd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` s ) e. RR ) |
| 143 |
142
|
recnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` s ) e. CC ) |
| 144 |
143
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` s ) e. CC ) |
| 145 |
128 137 138 139 144
|
cncfmptssg |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 146 |
127 145
|
mulcncf |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 147 |
45 146
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 148 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |
| 149 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) |
| 150 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) |
| 151 |
3
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> F : RR --> RR ) |
| 152 |
4
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
| 153 |
152 141
|
readdcld |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
| 154 |
151 153
|
ffvelcdmd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. RR ) |
| 155 |
154
|
recnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
| 156 |
155
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
| 157 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> RR ) |
| 158 |
|
ioossre |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR |
| 159 |
158
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
| 160 |
85 94
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` i ) ) |
| 161 |
83
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
| 162 |
9 161
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
| 163 |
157 76 138 148 117 159 160 162 74
|
fourierdlem53 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` i ) ) ) |
| 164 |
|
limcresi |
|- ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` i ) ) C_ ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) |
| 165 |
132 13
|
sselid |
|- ( ph -> D e. ( RR -cn-> CC ) ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D e. ( RR -cn-> CC ) ) |
| 167 |
166 73
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. ( D limCC ( Q ` i ) ) ) |
| 168 |
133
|
oveq1d |
|- ( ph -> ( D limCC ( Q ` i ) ) = ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` i ) ) ) |
| 169 |
168
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D limCC ( Q ` i ) ) = ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` i ) ) ) |
| 170 |
167 169
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` i ) ) ) |
| 171 |
164 170
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 172 |
138
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) ) |
| 173 |
172
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) limCC ( Q ` i ) ) ) |
| 174 |
171 173
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) limCC ( Q ` i ) ) ) |
| 175 |
148 149 150 156 144 163 174
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( R x. ( D ` ( Q ` i ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) limCC ( Q ` i ) ) ) |
| 176 |
14
|
reseq1i |
|- ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( A [,] B ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 177 |
176 44
|
eqtr2id |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 178 |
177
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 179 |
175 178
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( R x. ( D ` ( Q ` i ) ) ) e. ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 180 |
66 99
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` ( i + 1 ) ) ) |
| 181 |
114
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) = ( X + ( Q ` ( i + 1 ) ) ) ) |
| 182 |
181
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
| 183 |
10 182
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
| 184 |
89
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 185 |
157 76 138 148 117 159 180 183 184
|
fourierdlem53 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 186 |
|
limcresi |
|- ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) C_ ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) |
| 187 |
166 89
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. ( D limCC ( Q ` ( i + 1 ) ) ) ) |
| 188 |
133
|
oveq1d |
|- ( ph -> ( D limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 189 |
188
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 190 |
187 189
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. ( ( s e. RR |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 191 |
186 190
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 192 |
172
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( s e. RR |-> ( D ` s ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 193 |
191 192
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( D ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 194 |
148 149 150 156 144 185 193
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( L x. ( D ` ( Q ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 195 |
177
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( D ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 196 |
194 195
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( L x. ( D ` ( Q ` ( i + 1 ) ) ) ) e. ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 197 |
12 6 15 31 147 179 196
|
fourierdlem69 |
|- ( ph -> G e. L^1 ) |