| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem14.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem14.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem14.x |
|- ( ph -> X e. RR ) |
| 4 |
|
fourierdlem14.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + X ) /\ ( p ` m ) = ( B + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 5 |
|
fourierdlem14.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 6 |
|
fourierdlem14.m |
|- ( ph -> M e. NN ) |
| 7 |
|
fourierdlem14.v |
|- ( ph -> V e. ( P ` M ) ) |
| 8 |
|
fourierdlem14.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
| 9 |
4
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
| 10 |
6 9
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
| 11 |
7 10
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
| 12 |
11
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
| 13 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
| 14 |
12 13
|
syl |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
| 15 |
14
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. RR ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
| 17 |
15 16
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. RR ) |
| 18 |
17 8
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 19 |
|
reex |
|- RR e. _V |
| 20 |
19
|
a1i |
|- ( ph -> RR e. _V ) |
| 21 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 22 |
21
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
| 23 |
20 22
|
elmapd |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) ) |
| 24 |
18 23
|
mpbird |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 25 |
8
|
a1i |
|- ( ph -> Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) ) |
| 26 |
|
fveq2 |
|- ( i = 0 -> ( V ` i ) = ( V ` 0 ) ) |
| 27 |
26
|
oveq1d |
|- ( i = 0 -> ( ( V ` i ) - X ) = ( ( V ` 0 ) - X ) ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( V ` i ) - X ) = ( ( V ` 0 ) - X ) ) |
| 29 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 30 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 31 |
|
0le0 |
|- 0 <_ 0 |
| 32 |
31
|
a1i |
|- ( ph -> 0 <_ 0 ) |
| 33 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 34 |
6
|
nnred |
|- ( ph -> M e. RR ) |
| 35 |
6
|
nngt0d |
|- ( ph -> 0 < M ) |
| 36 |
33 34 35
|
ltled |
|- ( ph -> 0 <_ M ) |
| 37 |
29 30 29 32 36
|
elfzd |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 38 |
14 37
|
ffvelcdmd |
|- ( ph -> ( V ` 0 ) e. RR ) |
| 39 |
38 3
|
resubcld |
|- ( ph -> ( ( V ` 0 ) - X ) e. RR ) |
| 40 |
25 28 37 39
|
fvmptd |
|- ( ph -> ( Q ` 0 ) = ( ( V ` 0 ) - X ) ) |
| 41 |
11
|
simprd |
|- ( ph -> ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) |
| 42 |
41
|
simpld |
|- ( ph -> ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) ) |
| 43 |
42
|
simpld |
|- ( ph -> ( V ` 0 ) = ( A + X ) ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( V ` 0 ) - X ) = ( ( A + X ) - X ) ) |
| 45 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 46 |
3
|
recnd |
|- ( ph -> X e. CC ) |
| 47 |
45 46
|
pncand |
|- ( ph -> ( ( A + X ) - X ) = A ) |
| 48 |
40 44 47
|
3eqtrd |
|- ( ph -> ( Q ` 0 ) = A ) |
| 49 |
|
fveq2 |
|- ( i = M -> ( V ` i ) = ( V ` M ) ) |
| 50 |
49
|
oveq1d |
|- ( i = M -> ( ( V ` i ) - X ) = ( ( V ` M ) - X ) ) |
| 51 |
50
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( V ` i ) - X ) = ( ( V ` M ) - X ) ) |
| 52 |
34
|
leidd |
|- ( ph -> M <_ M ) |
| 53 |
29 30 30 36 52
|
elfzd |
|- ( ph -> M e. ( 0 ... M ) ) |
| 54 |
14 53
|
ffvelcdmd |
|- ( ph -> ( V ` M ) e. RR ) |
| 55 |
54 3
|
resubcld |
|- ( ph -> ( ( V ` M ) - X ) e. RR ) |
| 56 |
25 51 53 55
|
fvmptd |
|- ( ph -> ( Q ` M ) = ( ( V ` M ) - X ) ) |
| 57 |
42
|
simprd |
|- ( ph -> ( V ` M ) = ( B + X ) ) |
| 58 |
57
|
oveq1d |
|- ( ph -> ( ( V ` M ) - X ) = ( ( B + X ) - X ) ) |
| 59 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 60 |
59 46
|
pncand |
|- ( ph -> ( ( B + X ) - X ) = B ) |
| 61 |
56 58 60
|
3eqtrd |
|- ( ph -> ( Q ` M ) = B ) |
| 62 |
48 61
|
jca |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 63 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 64 |
63 15
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
| 65 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
| 66 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 68 |
65 67
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
| 69 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
| 70 |
41
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) |
| 71 |
70
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
| 72 |
64 68 69 71
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) < ( ( V ` ( i + 1 ) ) - X ) ) |
| 73 |
63
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 74 |
63 17
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
| 75 |
8
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 76 |
73 74 75
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 77 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
| 78 |
77
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
| 79 |
78
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
| 80 |
8 79
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
| 81 |
80
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
| 82 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
| 83 |
82
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 84 |
83
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 85 |
68 69
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
| 86 |
81 84 67 85
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 87 |
72 76 86
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 88 |
87
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 89 |
24 62 88
|
jca32 |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 90 |
5
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( O ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 91 |
6 90
|
syl |
|- ( ph -> ( Q e. ( O ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 92 |
89 91
|
mpbird |
|- ( ph -> Q e. ( O ` M ) ) |