| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem41.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem41.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem41.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem41.t |
|- T = ( B - A ) |
| 5 |
|
fourierdlem41.dper |
|- ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) |
| 6 |
|
fourierdlem41.x |
|- ( ph -> X e. RR ) |
| 7 |
|
fourierdlem41.z |
|- Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
| 8 |
|
fourierdlem41.e |
|- E = ( x e. RR |-> ( x + ( Z ` x ) ) ) |
| 9 |
|
fourierdlem41.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 10 |
|
fourierdlem41.m |
|- ( ph -> M e. NN ) |
| 11 |
|
fourierdlem41.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 12 |
|
fourierdlem41.qssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
| 13 |
|
simpr |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> ( E ` X ) e. ran Q ) |
| 14 |
9
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 15 |
10 14
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 16 |
11 15
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 17 |
16
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 18 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 19 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
| 20 |
17 18 19
|
3syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> Q Fn ( 0 ... M ) ) |
| 22 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
| 23 |
21 22
|
syl |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
| 24 |
13 23
|
mpbid |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) |
| 25 |
|
0zd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 e. ZZ ) |
| 26 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ZZ ) |
| 28 |
|
1zzd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 e. ZZ ) |
| 29 |
27 28
|
zsubcld |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ZZ ) |
| 30 |
|
simpll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ -. 0 < j ) -> ph ) |
| 31 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
| 32 |
31
|
anim1i |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> ( 0 <_ j /\ -. 0 < j ) ) |
| 33 |
|
0red |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> 0 e. RR ) |
| 34 |
26
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
| 35 |
34
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> j e. RR ) |
| 36 |
33 35
|
eqleltd |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> ( 0 = j <-> ( 0 <_ j /\ -. 0 < j ) ) ) |
| 37 |
32 36
|
mpbird |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> 0 = j ) |
| 38 |
37
|
eqcomd |
|- ( ( j e. ( 0 ... M ) /\ -. 0 < j ) -> j = 0 ) |
| 39 |
38
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ -. 0 < j ) -> j = 0 ) |
| 40 |
|
fveq2 |
|- ( j = 0 -> ( Q ` j ) = ( Q ` 0 ) ) |
| 41 |
16
|
simprld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 42 |
41
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 43 |
40 42
|
sylan9eqr |
|- ( ( ph /\ j = 0 ) -> ( Q ` j ) = A ) |
| 44 |
30 39 43
|
syl2anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ -. 0 < j ) -> ( Q ` j ) = A ) |
| 45 |
44
|
3adantl3 |
|- ( ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ -. 0 < j ) -> ( Q ` j ) = A ) |
| 46 |
|
simpr |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) = ( E ` X ) ) |
| 47 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 48 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 49 |
|
eqid |
|- ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 50 |
1 2 3 4 49
|
fourierdlem4 |
|- ( ph -> ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) : RR --> ( A (,] B ) ) |
| 51 |
8
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( Z ` x ) ) ) ) |
| 52 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 53 |
2
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. RR ) |
| 54 |
53 52
|
resubcld |
|- ( ( ph /\ x e. RR ) -> ( B - x ) e. RR ) |
| 55 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 56 |
4 55
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR ) |
| 58 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 59 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 60 |
3 59
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 61 |
4
|
eqcomi |
|- ( B - A ) = T |
| 62 |
61
|
a1i |
|- ( ph -> ( B - A ) = T ) |
| 63 |
60 62
|
breqtrd |
|- ( ph -> 0 < T ) |
| 64 |
58 63
|
gtned |
|- ( ph -> T =/= 0 ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ x e. RR ) -> T =/= 0 ) |
| 66 |
54 57 65
|
redivcld |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) e. RR ) |
| 67 |
66
|
flcld |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) |
| 68 |
67
|
zred |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. RR ) |
| 69 |
68 57
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. RR ) |
| 70 |
7
|
fvmpt2 |
|- ( ( x e. RR /\ ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. RR ) -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
| 71 |
52 69 70
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
| 72 |
71
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( Z ` x ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 73 |
72
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( x + ( Z ` x ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
| 74 |
51 73
|
eqtrd |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
| 75 |
74
|
feq1d |
|- ( ph -> ( E : RR --> ( A (,] B ) <-> ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) : RR --> ( A (,] B ) ) ) |
| 76 |
50 75
|
mpbird |
|- ( ph -> E : RR --> ( A (,] B ) ) |
| 77 |
76 6
|
ffvelcdmd |
|- ( ph -> ( E ` X ) e. ( A (,] B ) ) |
| 78 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( E ` X ) e. ( A (,] B ) ) -> A < ( E ` X ) ) |
| 79 |
47 48 77 78
|
syl3anc |
|- ( ph -> A < ( E ` X ) ) |
| 80 |
1 79
|
gtned |
|- ( ph -> ( E ` X ) =/= A ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) =/= A ) |
| 82 |
46 81
|
eqnetrd |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) =/= A ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ -. 0 < j ) -> ( Q ` j ) =/= A ) |
| 84 |
83
|
3adantl2 |
|- ( ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ -. 0 < j ) -> ( Q ` j ) =/= A ) |
| 85 |
84
|
neneqd |
|- ( ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ -. 0 < j ) -> -. ( Q ` j ) = A ) |
| 86 |
45 85
|
condan |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 < j ) |
| 87 |
|
zltlem1 |
|- ( ( 0 e. ZZ /\ j e. ZZ ) -> ( 0 < j <-> 0 <_ ( j - 1 ) ) ) |
| 88 |
25 27 87
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( 0 < j <-> 0 <_ ( j - 1 ) ) ) |
| 89 |
86 88
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 <_ ( j - 1 ) ) |
| 90 |
|
eluz2 |
|- ( ( j - 1 ) e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ ( j - 1 ) e. ZZ /\ 0 <_ ( j - 1 ) ) ) |
| 91 |
25 29 89 90
|
syl3anbrc |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
| 92 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
| 93 |
92
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> M e. ZZ ) |
| 94 |
|
1red |
|- ( j e. ( 0 ... M ) -> 1 e. RR ) |
| 95 |
34 94
|
resubcld |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. RR ) |
| 96 |
92
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
| 97 |
34
|
ltm1d |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < j ) |
| 98 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
| 99 |
95 34 96 97 98
|
ltletrd |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < M ) |
| 100 |
99
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) < M ) |
| 101 |
|
elfzo2 |
|- ( ( j - 1 ) e. ( 0 ..^ M ) <-> ( ( j - 1 ) e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ ( j - 1 ) < M ) ) |
| 102 |
91 93 100 101
|
syl3anbrc |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ..^ M ) ) |
| 103 |
17 18
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 104 |
103
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> Q : ( 0 ... M ) --> RR ) |
| 105 |
95 96 99
|
ltled |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) <_ M ) |
| 106 |
105
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) <_ M ) |
| 107 |
25 93 29 89 106
|
elfzd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ... M ) ) |
| 108 |
104 107
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR ) |
| 109 |
108
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR* ) |
| 110 |
34
|
recnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
| 111 |
|
1cnd |
|- ( j e. ( 0 ... M ) -> 1 e. CC ) |
| 112 |
110 111
|
npcand |
|- ( j e. ( 0 ... M ) -> ( ( j - 1 ) + 1 ) = j ) |
| 113 |
112
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
| 114 |
113
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
| 115 |
103
|
ffvelcdmda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
| 116 |
115
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
| 117 |
114 116
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) e. RR* ) |
| 118 |
117
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) e. RR* ) |
| 119 |
|
id |
|- ( x = X -> x = X ) |
| 120 |
|
fveq2 |
|- ( x = X -> ( Z ` x ) = ( Z ` X ) ) |
| 121 |
119 120
|
oveq12d |
|- ( x = X -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
| 122 |
121
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
| 123 |
7
|
a1i |
|- ( ph -> Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 124 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
| 125 |
124
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
| 126 |
125
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
| 127 |
126
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 128 |
127
|
adantl |
|- ( ( ph /\ x = X ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 129 |
2 6
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
| 130 |
129 56 64
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
| 131 |
130
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 132 |
131
|
zred |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
| 133 |
132 56
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
| 134 |
123 128 6 133
|
fvmptd |
|- ( ph -> ( Z ` X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 135 |
134 133
|
eqeltrd |
|- ( ph -> ( Z ` X ) e. RR ) |
| 136 |
6 135
|
readdcld |
|- ( ph -> ( X + ( Z ` X ) ) e. RR ) |
| 137 |
51 122 6 136
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
| 138 |
137 136
|
eqeltrd |
|- ( ph -> ( E ` X ) e. RR ) |
| 139 |
138
|
rexrd |
|- ( ph -> ( E ` X ) e. RR* ) |
| 140 |
139
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. RR* ) |
| 141 |
|
simp1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ph ) |
| 142 |
|
ovex |
|- ( j - 1 ) e. _V |
| 143 |
|
eleq1 |
|- ( i = ( j - 1 ) -> ( i e. ( 0 ..^ M ) <-> ( j - 1 ) e. ( 0 ..^ M ) ) ) |
| 144 |
143
|
anbi2d |
|- ( i = ( j - 1 ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) ) ) |
| 145 |
|
fveq2 |
|- ( i = ( j - 1 ) -> ( Q ` i ) = ( Q ` ( j - 1 ) ) ) |
| 146 |
|
oveq1 |
|- ( i = ( j - 1 ) -> ( i + 1 ) = ( ( j - 1 ) + 1 ) ) |
| 147 |
146
|
fveq2d |
|- ( i = ( j - 1 ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 148 |
145 147
|
breq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
| 149 |
144 148
|
imbi12d |
|- ( i = ( j - 1 ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
| 150 |
16
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 151 |
150
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 152 |
142 149 151
|
vtocl |
|- ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 153 |
141 102 152
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 154 |
113
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
| 155 |
153 154
|
breqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` j ) ) |
| 156 |
|
simp3 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) = ( E ` X ) ) |
| 157 |
155 156
|
breqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( E ` X ) ) |
| 158 |
138
|
leidd |
|- ( ph -> ( E ` X ) <_ ( E ` X ) ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( E ` X ) ) |
| 160 |
46
|
eqcomd |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) = ( Q ` j ) ) |
| 161 |
159 160
|
breqtrd |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
| 162 |
161
|
3adant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
| 163 |
112
|
eqcomd |
|- ( j e. ( 0 ... M ) -> j = ( ( j - 1 ) + 1 ) ) |
| 164 |
163
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( Q ` j ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 165 |
164
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 166 |
162 165
|
breqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` ( ( j - 1 ) + 1 ) ) ) |
| 167 |
109 118 140 157 166
|
eliocd |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
| 168 |
145 147
|
oveq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
| 169 |
168
|
eleq2d |
|- ( i = ( j - 1 ) -> ( ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
| 170 |
169
|
rspcev |
|- ( ( ( j - 1 ) e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 171 |
102 167 170
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 172 |
171
|
3exp |
|- ( ph -> ( j e. ( 0 ... M ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) ) |
| 173 |
172
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> ( j e. ( 0 ... M ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) ) |
| 174 |
173
|
rexlimdv |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
| 175 |
24 174
|
mpd |
|- ( ( ph /\ ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 176 |
10
|
adantr |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> M e. NN ) |
| 177 |
103
|
adantr |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> Q : ( 0 ... M ) --> RR ) |
| 178 |
|
iocssicc |
|- ( ( Q ` 0 ) (,] ( Q ` M ) ) C_ ( ( Q ` 0 ) [,] ( Q ` M ) ) |
| 179 |
41
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
| 180 |
42 179
|
oveq12d |
|- ( ph -> ( ( Q ` 0 ) (,] ( Q ` M ) ) = ( A (,] B ) ) |
| 181 |
77 180
|
eleqtrrd |
|- ( ph -> ( E ` X ) e. ( ( Q ` 0 ) (,] ( Q ` M ) ) ) |
| 182 |
178 181
|
sselid |
|- ( ph -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 184 |
|
simpr |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> -. ( E ` X ) e. ran Q ) |
| 185 |
|
fveq2 |
|- ( k = j -> ( Q ` k ) = ( Q ` j ) ) |
| 186 |
185
|
breq1d |
|- ( k = j -> ( ( Q ` k ) < ( E ` X ) <-> ( Q ` j ) < ( E ` X ) ) ) |
| 187 |
186
|
cbvrabv |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } = { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } |
| 188 |
187
|
supeq1i |
|- sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } , RR , < ) |
| 189 |
176 177 183 184 188
|
fourierdlem25 |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 190 |
|
ioossioc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) |
| 191 |
190
|
a1i |
|- ( ( ( ph /\ -. ( E ` X ) e. ran Q ) /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 192 |
191
|
sseld |
|- ( ( ( ph /\ -. ( E ` X ) e. ran Q ) /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
| 193 |
192
|
reximdva |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
| 194 |
189 193
|
mpd |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 195 |
175 194
|
pm2.61dan |
|- ( ph -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 196 |
103
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 197 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 198 |
197
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 199 |
196 198
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 200 |
199
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 201 |
135
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Z ` X ) e. RR ) |
| 202 |
200 201
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR ) |
| 203 |
138
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. RR ) |
| 204 |
200
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 205 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 206 |
205
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 207 |
196 206
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 208 |
207
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 209 |
208
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 210 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
| 211 |
|
iocgtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( E ` X ) ) |
| 212 |
204 209 210 211
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( E ` X ) ) |
| 213 |
200 203 201 212
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < ( ( E ` X ) - ( Z ` X ) ) ) |
| 214 |
137
|
oveq1d |
|- ( ph -> ( ( E ` X ) - ( Z ` X ) ) = ( ( X + ( Z ` X ) ) - ( Z ` X ) ) ) |
| 215 |
6
|
recnd |
|- ( ph -> X e. CC ) |
| 216 |
135
|
recnd |
|- ( ph -> ( Z ` X ) e. CC ) |
| 217 |
215 216
|
pncand |
|- ( ph -> ( ( X + ( Z ` X ) ) - ( Z ` X ) ) = X ) |
| 218 |
214 217
|
eqtrd |
|- ( ph -> ( ( E ` X ) - ( Z ` X ) ) = X ) |
| 219 |
218
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( E ` X ) - ( Z ` X ) ) = X ) |
| 220 |
213 219
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < X ) |
| 221 |
|
elioore |
|- ( y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) -> y e. RR ) |
| 222 |
134
|
oveq2d |
|- ( ph -> ( y + ( Z ` X ) ) = ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 223 |
132
|
recnd |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
| 224 |
56
|
recnd |
|- ( ph -> T e. CC ) |
| 225 |
223 224
|
mulneg1d |
|- ( ph -> ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) = -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 226 |
222 225
|
oveq12d |
|- ( ph -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 227 |
226
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 228 |
|
simpr |
|- ( ( ph /\ y e. RR ) -> y e. RR ) |
| 229 |
133
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
| 230 |
228 229
|
readdcld |
|- ( ( ph /\ y e. RR ) -> ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. RR ) |
| 231 |
230
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. CC ) |
| 232 |
229
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
| 233 |
231 232
|
negsubd |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 234 |
228
|
recnd |
|- ( ( ph /\ y e. RR ) -> y e. CC ) |
| 235 |
234 232
|
pncand |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = y ) |
| 236 |
227 233 235
|
3eqtrrd |
|- ( ( ph /\ y e. RR ) -> y = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 237 |
221 236
|
sylan2 |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 238 |
237
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 239 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ph ) |
| 240 |
12
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
| 241 |
240
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
| 242 |
204
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) e. RR* ) |
| 243 |
209
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 244 |
221
|
adantl |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. RR ) |
| 245 |
135
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Z ` X ) e. RR ) |
| 246 |
244 245
|
readdcld |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. RR ) |
| 247 |
246
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. RR ) |
| 248 |
135
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Z ` X ) e. RR ) |
| 249 |
199 248
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR ) |
| 250 |
249
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
| 251 |
250
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
| 252 |
6
|
rexrd |
|- ( ph -> X e. RR* ) |
| 253 |
252
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> X e. RR* ) |
| 254 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
| 255 |
|
ioogtlb |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < y ) |
| 256 |
251 253 254 255
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < y ) |
| 257 |
199
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) e. RR ) |
| 258 |
135
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Z ` X ) e. RR ) |
| 259 |
221
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. RR ) |
| 260 |
257 258 259
|
ltsubaddd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) < y <-> ( Q ` i ) < ( y + ( Z ` X ) ) ) ) |
| 261 |
256 260
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) < ( y + ( Z ` X ) ) ) |
| 262 |
261
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) < ( y + ( Z ` X ) ) ) |
| 263 |
239 138
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( E ` X ) e. RR ) |
| 264 |
207
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 265 |
264
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 266 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> X e. RR ) |
| 267 |
|
iooltub |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y < X ) |
| 268 |
251 253 254 267
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y < X ) |
| 269 |
259 266 258 268
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( X + ( Z ` X ) ) ) |
| 270 |
137
|
eqcomd |
|- ( ph -> ( X + ( Z ` X ) ) = ( E ` X ) ) |
| 271 |
270
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( X + ( Z ` X ) ) = ( E ` X ) ) |
| 272 |
269 271
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( E ` X ) ) |
| 273 |
272
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( E ` X ) ) |
| 274 |
|
iocleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
| 275 |
204 209 210 274
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
| 276 |
275
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
| 277 |
247 263 265 273 276
|
ltletrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( Q ` ( i + 1 ) ) ) |
| 278 |
242 243 247 262 277
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 279 |
241 278
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. D ) |
| 280 |
239 130
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( B - X ) / T ) e. RR ) |
| 281 |
280
|
flcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 282 |
281
|
znegcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 283 |
|
negex |
|- -u ( |_ ` ( ( B - X ) / T ) ) e. _V |
| 284 |
|
eleq1 |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( k e. ZZ <-> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
| 285 |
284
|
3anbi3d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) ) |
| 286 |
|
oveq1 |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( k x. T ) = ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 287 |
286
|
oveq2d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 288 |
287
|
eleq1d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D <-> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) ) |
| 289 |
285 288
|
imbi12d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) ) ) |
| 290 |
|
ovex |
|- ( y + ( Z ` X ) ) e. _V |
| 291 |
|
eleq1 |
|- ( x = ( y + ( Z ` X ) ) -> ( x e. D <-> ( y + ( Z ` X ) ) e. D ) ) |
| 292 |
291
|
3anbi2d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) ) ) |
| 293 |
|
oveq1 |
|- ( x = ( y + ( Z ` X ) ) -> ( x + ( k x. T ) ) = ( ( y + ( Z ` X ) ) + ( k x. T ) ) ) |
| 294 |
293
|
eleq1d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( x + ( k x. T ) ) e. D <-> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) ) |
| 295 |
292 294
|
imbi12d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) ) ) |
| 296 |
290 295 5
|
vtocl |
|- ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) |
| 297 |
283 289 296
|
vtocl |
|- ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) |
| 298 |
239 279 282 297
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) |
| 299 |
238 298
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. D ) |
| 300 |
299
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> A. y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) y e. D ) |
| 301 |
|
dfss3 |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D <-> A. y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) y e. D ) |
| 302 |
300 301
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D ) |
| 303 |
|
breq1 |
|- ( y = ( ( Q ` i ) - ( Z ` X ) ) -> ( y < X <-> ( ( Q ` i ) - ( Z ` X ) ) < X ) ) |
| 304 |
|
oveq1 |
|- ( y = ( ( Q ` i ) - ( Z ` X ) ) -> ( y (,) X ) = ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
| 305 |
304
|
sseq1d |
|- ( y = ( ( Q ` i ) - ( Z ` X ) ) -> ( ( y (,) X ) C_ D <-> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D ) ) |
| 306 |
303 305
|
anbi12d |
|- ( y = ( ( Q ` i ) - ( Z ` X ) ) -> ( ( y < X /\ ( y (,) X ) C_ D ) <-> ( ( ( Q ` i ) - ( Z ` X ) ) < X /\ ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D ) ) ) |
| 307 |
306
|
rspcev |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR /\ ( ( ( Q ` i ) - ( Z ` X ) ) < X /\ ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D ) ) -> E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) ) |
| 308 |
202 220 302 307
|
syl12anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) ) |
| 309 |
308
|
3exp |
|- ( ph -> ( i e. ( 0 ..^ M ) -> ( ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) -> E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) ) ) ) |
| 310 |
309
|
rexlimdv |
|- ( ph -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) -> E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) ) ) |
| 311 |
195 310
|
mpd |
|- ( ph -> E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) ) |
| 312 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 313 |
10
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 314 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 315 |
|
0le1 |
|- 0 <_ 1 |
| 316 |
315
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 317 |
10
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 318 |
312 313 314 316 317
|
elfzd |
|- ( ph -> 1 e. ( 0 ... M ) ) |
| 319 |
103 318
|
ffvelcdmd |
|- ( ph -> ( Q ` 1 ) e. RR ) |
| 320 |
135 56
|
resubcld |
|- ( ph -> ( ( Z ` X ) - T ) e. RR ) |
| 321 |
319 320
|
resubcld |
|- ( ph -> ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR ) |
| 322 |
321
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR ) |
| 323 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 324 |
323 224
|
pncand |
|- ( ph -> ( ( A + T ) - T ) = A ) |
| 325 |
324
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( A + T ) - T ) = A ) |
| 326 |
4
|
oveq2i |
|- ( A + T ) = ( A + ( B - A ) ) |
| 327 |
326
|
a1i |
|- ( ( ph /\ ( E ` X ) = B ) -> ( A + T ) = ( A + ( B - A ) ) ) |
| 328 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 329 |
323 328
|
pncan3d |
|- ( ph -> ( A + ( B - A ) ) = B ) |
| 330 |
329
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( A + ( B - A ) ) = B ) |
| 331 |
|
id |
|- ( ( E ` X ) = B -> ( E ` X ) = B ) |
| 332 |
331
|
eqcomd |
|- ( ( E ` X ) = B -> B = ( E ` X ) ) |
| 333 |
332
|
adantl |
|- ( ( ph /\ ( E ` X ) = B ) -> B = ( E ` X ) ) |
| 334 |
327 330 333
|
3eqtrrd |
|- ( ( ph /\ ( E ` X ) = B ) -> ( E ` X ) = ( A + T ) ) |
| 335 |
334
|
oveq1d |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( E ` X ) - T ) = ( ( A + T ) - T ) ) |
| 336 |
42
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( Q ` 0 ) = A ) |
| 337 |
325 335 336
|
3eqtr4rd |
|- ( ( ph /\ ( E ` X ) = B ) -> ( Q ` 0 ) = ( ( E ` X ) - T ) ) |
| 338 |
337
|
oveq1d |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( Q ` 0 ) - ( ( Z ` X ) - T ) ) = ( ( ( E ` X ) - T ) - ( ( Z ` X ) - T ) ) ) |
| 339 |
138
|
recnd |
|- ( ph -> ( E ` X ) e. CC ) |
| 340 |
339 216 224
|
nnncan2d |
|- ( ph -> ( ( ( E ` X ) - T ) - ( ( Z ` X ) - T ) ) = ( ( E ` X ) - ( Z ` X ) ) ) |
| 341 |
340
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( ( E ` X ) - T ) - ( ( Z ` X ) - T ) ) = ( ( E ` X ) - ( Z ` X ) ) ) |
| 342 |
218
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( E ` X ) - ( Z ` X ) ) = X ) |
| 343 |
338 341 342
|
3eqtrrd |
|- ( ( ph /\ ( E ` X ) = B ) -> X = ( ( Q ` 0 ) - ( ( Z ` X ) - T ) ) ) |
| 344 |
42 1
|
eqeltrd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 345 |
10
|
nngt0d |
|- ( ph -> 0 < M ) |
| 346 |
|
fzolb |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
| 347 |
312 313 345 346
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 348 |
|
0re |
|- 0 e. RR |
| 349 |
|
eleq1 |
|- ( i = 0 -> ( i e. ( 0 ..^ M ) <-> 0 e. ( 0 ..^ M ) ) ) |
| 350 |
349
|
anbi2d |
|- ( i = 0 -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ 0 e. ( 0 ..^ M ) ) ) ) |
| 351 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 352 |
|
oveq1 |
|- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
| 353 |
352
|
fveq2d |
|- ( i = 0 -> ( Q ` ( i + 1 ) ) = ( Q ` ( 0 + 1 ) ) ) |
| 354 |
351 353
|
breq12d |
|- ( i = 0 -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
| 355 |
350 354
|
imbi12d |
|- ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) ) |
| 356 |
355 151
|
vtoclg |
|- ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
| 357 |
348 356
|
ax-mp |
|- ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
| 358 |
347 357
|
mpdan |
|- ( ph -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
| 359 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 360 |
359
|
fveq2i |
|- ( Q ` ( 0 + 1 ) ) = ( Q ` 1 ) |
| 361 |
360
|
a1i |
|- ( ph -> ( Q ` ( 0 + 1 ) ) = ( Q ` 1 ) ) |
| 362 |
358 361
|
breqtrd |
|- ( ph -> ( Q ` 0 ) < ( Q ` 1 ) ) |
| 363 |
344 319 320 362
|
ltsub1dd |
|- ( ph -> ( ( Q ` 0 ) - ( ( Z ` X ) - T ) ) < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) |
| 364 |
363
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( Q ` 0 ) - ( ( Z ` X ) - T ) ) < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) |
| 365 |
343 364
|
eqbrtrd |
|- ( ( ph /\ ( E ` X ) = B ) -> X < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) |
| 366 |
|
elioore |
|- ( y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) -> y e. RR ) |
| 367 |
134
|
eqcomd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) = ( Z ` X ) ) |
| 368 |
367
|
negeqd |
|- ( ph -> -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) = -u ( Z ` X ) ) |
| 369 |
225 368
|
eqtrd |
|- ( ph -> ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) = -u ( Z ` X ) ) |
| 370 |
224
|
mullidd |
|- ( ph -> ( 1 x. T ) = T ) |
| 371 |
369 370
|
oveq12d |
|- ( ph -> ( ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) + ( 1 x. T ) ) = ( -u ( Z ` X ) + T ) ) |
| 372 |
223
|
negcld |
|- ( ph -> -u ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
| 373 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 374 |
372 373 224
|
adddird |
|- ( ph -> ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) = ( ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) + ( 1 x. T ) ) ) |
| 375 |
216 224
|
negsubdid |
|- ( ph -> -u ( ( Z ` X ) - T ) = ( -u ( Z ` X ) + T ) ) |
| 376 |
371 374 375
|
3eqtr4d |
|- ( ph -> ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) = -u ( ( Z ` X ) - T ) ) |
| 377 |
376
|
oveq2d |
|- ( ph -> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) = ( ( y + ( ( Z ` X ) - T ) ) + -u ( ( Z ` X ) - T ) ) ) |
| 378 |
377
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) = ( ( y + ( ( Z ` X ) - T ) ) + -u ( ( Z ` X ) - T ) ) ) |
| 379 |
320
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( ( Z ` X ) - T ) e. RR ) |
| 380 |
228 379
|
readdcld |
|- ( ( ph /\ y e. RR ) -> ( y + ( ( Z ` X ) - T ) ) e. RR ) |
| 381 |
380
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( y + ( ( Z ` X ) - T ) ) e. CC ) |
| 382 |
379
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( ( Z ` X ) - T ) e. CC ) |
| 383 |
381 382
|
negsubd |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( ( Z ` X ) - T ) ) + -u ( ( Z ` X ) - T ) ) = ( ( y + ( ( Z ` X ) - T ) ) - ( ( Z ` X ) - T ) ) ) |
| 384 |
234 382
|
pncand |
|- ( ( ph /\ y e. RR ) -> ( ( y + ( ( Z ` X ) - T ) ) - ( ( Z ` X ) - T ) ) = y ) |
| 385 |
378 383 384
|
3eqtrrd |
|- ( ( ph /\ y e. RR ) -> y = ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) ) |
| 386 |
366 385
|
sylan2 |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y = ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) ) |
| 387 |
386
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y = ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) ) |
| 388 |
|
simpll |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ph ) |
| 389 |
361
|
eqcomd |
|- ( ph -> ( Q ` 1 ) = ( Q ` ( 0 + 1 ) ) ) |
| 390 |
389
|
oveq2d |
|- ( ph -> ( ( Q ` 0 ) (,) ( Q ` 1 ) ) = ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) ) |
| 391 |
351 353
|
oveq12d |
|- ( i = 0 -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) ) |
| 392 |
391
|
sseq1d |
|- ( i = 0 -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D <-> ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) C_ D ) ) |
| 393 |
350 392
|
imbi12d |
|- ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) C_ D ) ) ) |
| 394 |
393 12
|
vtoclg |
|- ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) C_ D ) ) |
| 395 |
348 394
|
ax-mp |
|- ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) C_ D ) |
| 396 |
347 395
|
mpdan |
|- ( ph -> ( ( Q ` 0 ) (,) ( Q ` ( 0 + 1 ) ) ) C_ D ) |
| 397 |
390 396
|
eqsstrd |
|- ( ph -> ( ( Q ` 0 ) (,) ( Q ` 1 ) ) C_ D ) |
| 398 |
397
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( ( Q ` 0 ) (,) ( Q ` 1 ) ) C_ D ) |
| 399 |
42 47
|
eqeltrd |
|- ( ph -> ( Q ` 0 ) e. RR* ) |
| 400 |
399
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( Q ` 0 ) e. RR* ) |
| 401 |
319
|
rexrd |
|- ( ph -> ( Q ` 1 ) e. RR* ) |
| 402 |
401
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( Q ` 1 ) e. RR* ) |
| 403 |
366 380
|
sylan2 |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) e. RR ) |
| 404 |
403
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) e. RR ) |
| 405 |
339 215 216
|
subaddd |
|- ( ph -> ( ( ( E ` X ) - X ) = ( Z ` X ) <-> ( X + ( Z ` X ) ) = ( E ` X ) ) ) |
| 406 |
270 405
|
mpbird |
|- ( ph -> ( ( E ` X ) - X ) = ( Z ` X ) ) |
| 407 |
|
oveq1 |
|- ( ( E ` X ) = B -> ( ( E ` X ) - X ) = ( B - X ) ) |
| 408 |
406 407
|
sylan9req |
|- ( ( ph /\ ( E ` X ) = B ) -> ( Z ` X ) = ( B - X ) ) |
| 409 |
408
|
oveq1d |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( Z ` X ) - T ) = ( ( B - X ) - T ) ) |
| 410 |
409
|
oveq2d |
|- ( ( ph /\ ( E ` X ) = B ) -> ( X + ( ( Z ` X ) - T ) ) = ( X + ( ( B - X ) - T ) ) ) |
| 411 |
129
|
recnd |
|- ( ph -> ( B - X ) e. CC ) |
| 412 |
215 411 224
|
addsubassd |
|- ( ph -> ( ( X + ( B - X ) ) - T ) = ( X + ( ( B - X ) - T ) ) ) |
| 413 |
412
|
eqcomd |
|- ( ph -> ( X + ( ( B - X ) - T ) ) = ( ( X + ( B - X ) ) - T ) ) |
| 414 |
413
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( X + ( ( B - X ) - T ) ) = ( ( X + ( B - X ) ) - T ) ) |
| 415 |
328 224 323
|
subsub23d |
|- ( ph -> ( ( B - T ) = A <-> ( B - A ) = T ) ) |
| 416 |
62 415
|
mpbird |
|- ( ph -> ( B - T ) = A ) |
| 417 |
215 328
|
pncan3d |
|- ( ph -> ( X + ( B - X ) ) = B ) |
| 418 |
417
|
oveq1d |
|- ( ph -> ( ( X + ( B - X ) ) - T ) = ( B - T ) ) |
| 419 |
416 418 42
|
3eqtr4d |
|- ( ph -> ( ( X + ( B - X ) ) - T ) = ( Q ` 0 ) ) |
| 420 |
419
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( X + ( B - X ) ) - T ) = ( Q ` 0 ) ) |
| 421 |
410 414 420
|
3eqtrrd |
|- ( ( ph /\ ( E ` X ) = B ) -> ( Q ` 0 ) = ( X + ( ( Z ` X ) - T ) ) ) |
| 422 |
421
|
adantr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( Q ` 0 ) = ( X + ( ( Z ` X ) - T ) ) ) |
| 423 |
6
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> X e. RR ) |
| 424 |
366
|
adantl |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y e. RR ) |
| 425 |
320
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( ( Z ` X ) - T ) e. RR ) |
| 426 |
252
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> X e. RR* ) |
| 427 |
321
|
rexrd |
|- ( ph -> ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR* ) |
| 428 |
427
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR* ) |
| 429 |
|
simpr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) |
| 430 |
|
ioogtlb |
|- ( ( X e. RR* /\ ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR* /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> X < y ) |
| 431 |
426 428 429 430
|
syl3anc |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> X < y ) |
| 432 |
423 424 425 431
|
ltadd1dd |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( X + ( ( Z ` X ) - T ) ) < ( y + ( ( Z ` X ) - T ) ) ) |
| 433 |
432
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( X + ( ( Z ` X ) - T ) ) < ( y + ( ( Z ` X ) - T ) ) ) |
| 434 |
422 433
|
eqbrtrd |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( Q ` 0 ) < ( y + ( ( Z ` X ) - T ) ) ) |
| 435 |
|
iooltub |
|- ( ( X e. RR* /\ ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR* /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) |
| 436 |
426 428 429 435
|
syl3anc |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) |
| 437 |
319
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( Q ` 1 ) e. RR ) |
| 438 |
424 425 437
|
ltaddsubd |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( ( y + ( ( Z ` X ) - T ) ) < ( Q ` 1 ) <-> y < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) |
| 439 |
436 438
|
mpbird |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) < ( Q ` 1 ) ) |
| 440 |
439
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) < ( Q ` 1 ) ) |
| 441 |
400 402 404 434 440
|
eliood |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) e. ( ( Q ` 0 ) (,) ( Q ` 1 ) ) ) |
| 442 |
398 441
|
sseldd |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( y + ( ( Z ` X ) - T ) ) e. D ) |
| 443 |
131
|
znegcld |
|- ( ph -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 444 |
443
|
peano2zd |
|- ( ph -> ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) |
| 445 |
444
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) |
| 446 |
|
ovex |
|- ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. _V |
| 447 |
|
eleq1 |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( k e. ZZ <-> ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) ) |
| 448 |
447
|
3anbi3d |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) ) ) |
| 449 |
|
oveq1 |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( k x. T ) = ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) |
| 450 |
449
|
oveq2d |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) = ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) ) |
| 451 |
450
|
eleq1d |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) e. D <-> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) e. D ) ) |
| 452 |
448 451
|
imbi12d |
|- ( k = ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) -> ( ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ k e. ZZ ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) e. D ) ) ) |
| 453 |
|
ovex |
|- ( y + ( ( Z ` X ) - T ) ) e. _V |
| 454 |
|
eleq1 |
|- ( x = ( y + ( ( Z ` X ) - T ) ) -> ( x e. D <-> ( y + ( ( Z ` X ) - T ) ) e. D ) ) |
| 455 |
454
|
3anbi2d |
|- ( x = ( y + ( ( Z ` X ) - T ) ) -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ k e. ZZ ) ) ) |
| 456 |
|
oveq1 |
|- ( x = ( y + ( ( Z ` X ) - T ) ) -> ( x + ( k x. T ) ) = ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) ) |
| 457 |
456
|
eleq1d |
|- ( x = ( y + ( ( Z ` X ) - T ) ) -> ( ( x + ( k x. T ) ) e. D <-> ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) e. D ) ) |
| 458 |
455 457
|
imbi12d |
|- ( x = ( y + ( ( Z ` X ) - T ) ) -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ k e. ZZ ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) e. D ) ) ) |
| 459 |
453 458 5
|
vtocl |
|- ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ k e. ZZ ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( k x. T ) ) e. D ) |
| 460 |
446 452 459
|
vtocl |
|- ( ( ph /\ ( y + ( ( Z ` X ) - T ) ) e. D /\ ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) e. ZZ ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) e. D ) |
| 461 |
388 442 445 460
|
syl3anc |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> ( ( y + ( ( Z ` X ) - T ) ) + ( ( -u ( |_ ` ( ( B - X ) / T ) ) + 1 ) x. T ) ) e. D ) |
| 462 |
387 461
|
eqeltrd |
|- ( ( ( ph /\ ( E ` X ) = B ) /\ y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) -> y e. D ) |
| 463 |
462
|
ralrimiva |
|- ( ( ph /\ ( E ` X ) = B ) -> A. y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) y e. D ) |
| 464 |
|
dfss3 |
|- ( ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) C_ D <-> A. y e. ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) y e. D ) |
| 465 |
463 464
|
sylibr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) C_ D ) |
| 466 |
|
breq2 |
|- ( y = ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) -> ( X < y <-> X < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) |
| 467 |
|
oveq2 |
|- ( y = ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) -> ( X (,) y ) = ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) ) |
| 468 |
467
|
sseq1d |
|- ( y = ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) -> ( ( X (,) y ) C_ D <-> ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) C_ D ) ) |
| 469 |
466 468
|
anbi12d |
|- ( y = ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) -> ( ( X < y /\ ( X (,) y ) C_ D ) <-> ( X < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) /\ ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) C_ D ) ) ) |
| 470 |
469
|
rspcev |
|- ( ( ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) e. RR /\ ( X < ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) /\ ( X (,) ( ( Q ` 1 ) - ( ( Z ` X ) - T ) ) ) C_ D ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 471 |
322 365 465 470
|
syl12anc |
|- ( ( ph /\ ( E ` X ) = B ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 472 |
24
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) |
| 473 |
|
simp2 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ( 0 ... M ) ) |
| 474 |
34
|
3ad2ant2 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. RR ) |
| 475 |
96
|
3ad2ant2 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> M e. RR ) |
| 476 |
98
|
3ad2ant2 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j <_ M ) |
| 477 |
|
id |
|- ( ( Q ` j ) = ( E ` X ) -> ( Q ` j ) = ( E ` X ) ) |
| 478 |
477
|
eqcomd |
|- ( ( Q ` j ) = ( E ` X ) -> ( E ` X ) = ( Q ` j ) ) |
| 479 |
478
|
adantr |
|- ( ( ( Q ` j ) = ( E ` X ) /\ M = j ) -> ( E ` X ) = ( Q ` j ) ) |
| 480 |
479
|
3ad2antl3 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ M = j ) -> ( E ` X ) = ( Q ` j ) ) |
| 481 |
|
fveq2 |
|- ( M = j -> ( Q ` M ) = ( Q ` j ) ) |
| 482 |
481
|
eqcomd |
|- ( M = j -> ( Q ` j ) = ( Q ` M ) ) |
| 483 |
482
|
adantl |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ M = j ) -> ( Q ` j ) = ( Q ` M ) ) |
| 484 |
179
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ M = j ) -> ( Q ` M ) = B ) |
| 485 |
484
|
3ad2antl1 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ M = j ) -> ( Q ` M ) = B ) |
| 486 |
480 483 485
|
3eqtrd |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ M = j ) -> ( E ` X ) = B ) |
| 487 |
|
neneq |
|- ( ( E ` X ) =/= B -> -. ( E ` X ) = B ) |
| 488 |
487
|
ad2antlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ M = j ) -> -. ( E ` X ) = B ) |
| 489 |
488
|
3ad2antl1 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) /\ M = j ) -> -. ( E ` X ) = B ) |
| 490 |
486 489
|
pm2.65da |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> -. M = j ) |
| 491 |
490
|
neqned |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> M =/= j ) |
| 492 |
474 475 476 491
|
leneltd |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j < M ) |
| 493 |
|
elfzfzo |
|- ( j e. ( 0 ..^ M ) <-> ( j e. ( 0 ... M ) /\ j < M ) ) |
| 494 |
473 492 493
|
sylanbrc |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ( 0 ..^ M ) ) |
| 495 |
116
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
| 496 |
495
|
3adant3 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) e. RR* ) |
| 497 |
|
simp1l |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ph ) |
| 498 |
103
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 499 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 500 |
499
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 501 |
498 500
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
| 502 |
501
|
rexrd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
| 503 |
497 494 502
|
syl2anc |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
| 504 |
140
|
3adant1r |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. RR* ) |
| 505 |
46 159
|
eqbrtrd |
|- ( ( ph /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) <_ ( E ` X ) ) |
| 506 |
505
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) <_ ( E ` X ) ) |
| 507 |
506
|
3adant2 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) <_ ( E ` X ) ) |
| 508 |
478
|
3ad2ant3 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) = ( Q ` j ) ) |
| 509 |
|
eleq1 |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
| 510 |
509
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ j e. ( 0 ..^ M ) ) ) ) |
| 511 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
| 512 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 513 |
512
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
| 514 |
511 513
|
breq12d |
|- ( i = j -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) |
| 515 |
510 514
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) ) |
| 516 |
515 151
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
| 517 |
497 494 516
|
syl2anc |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
| 518 |
508 517
|
eqbrtrd |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) < ( Q ` ( j + 1 ) ) ) |
| 519 |
496 503 504 507 518
|
elicod |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) |
| 520 |
511 513
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) |
| 521 |
520
|
eleq2d |
|- ( i = j -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) ) |
| 522 |
521
|
rspcev |
|- ( ( j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 523 |
494 519 522
|
syl2anc |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = ( E ` X ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 524 |
523
|
3exp |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( j e. ( 0 ... M ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 525 |
524
|
adantr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ran Q ) -> ( j e. ( 0 ... M ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 526 |
525
|
rexlimdv |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ran Q ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
| 527 |
472 526
|
mpd |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 528 |
|
ioossico |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) |
| 529 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 530 |
528 529
|
sselid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 531 |
530
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
| 532 |
531
|
adantlr |
|- ( ( ( ph /\ -. ( E ` X ) e. ran Q ) /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
| 533 |
532
|
reximdva |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
| 534 |
189 533
|
mpd |
|- ( ( ph /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 535 |
534
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 536 |
527 535
|
pm2.61dan |
|- ( ( ph /\ ( E ` X ) =/= B ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 537 |
207 248
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR ) |
| 538 |
537
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR ) |
| 539 |
218
|
eqcomd |
|- ( ph -> X = ( ( E ` X ) - ( Z ` X ) ) ) |
| 540 |
539
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> X = ( ( E ` X ) - ( Z ` X ) ) ) |
| 541 |
138
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. RR ) |
| 542 |
207
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 543 |
135
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Z ` X ) e. RR ) |
| 544 |
199
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 545 |
544
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 546 |
208
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 547 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
| 548 |
|
icoltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) < ( Q ` ( i + 1 ) ) ) |
| 549 |
545 546 547 548
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) < ( Q ` ( i + 1 ) ) ) |
| 550 |
541 542 543 549
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( ( E ` X ) - ( Z ` X ) ) < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) |
| 551 |
540 550
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> X < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) |
| 552 |
|
elioore |
|- ( y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) -> y e. RR ) |
| 553 |
552 236
|
sylan2 |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 554 |
553
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 555 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ph ) |
| 556 |
12
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
| 557 |
556
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
| 558 |
545
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 559 |
546
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 560 |
552
|
adantl |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y e. RR ) |
| 561 |
135
|
adantr |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Z ` X ) e. RR ) |
| 562 |
560 561
|
readdcld |
|- ( ( ph /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) e. RR ) |
| 563 |
562
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) e. RR ) |
| 564 |
199
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 565 |
564
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Q ` i ) e. RR ) |
| 566 |
555 138
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( E ` X ) e. RR ) |
| 567 |
|
icogelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ ( E ` X ) ) |
| 568 |
545 546 547 567
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ ( E ` X ) ) |
| 569 |
568
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Q ` i ) <_ ( E ` X ) ) |
| 570 |
137
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
| 571 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> X e. RR ) |
| 572 |
552
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y e. RR ) |
| 573 |
135
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Z ` X ) e. RR ) |
| 574 |
252
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> X e. RR* ) |
| 575 |
537
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR* ) |
| 576 |
575
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR* ) |
| 577 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) |
| 578 |
|
ioogtlb |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR* /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> X < y ) |
| 579 |
574 576 577 578
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> X < y ) |
| 580 |
571 572 573 579
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( X + ( Z ` X ) ) < ( y + ( Z ` X ) ) ) |
| 581 |
570 580
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( E ` X ) < ( y + ( Z ` X ) ) ) |
| 582 |
581
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( E ` X ) < ( y + ( Z ` X ) ) ) |
| 583 |
565 566 563 569 582
|
lelttrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( Q ` i ) < ( y + ( Z ` X ) ) ) |
| 584 |
537
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR ) |
| 585 |
|
iooltub |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR* /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) |
| 586 |
574 576 577 585
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) |
| 587 |
572 584 573 586
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) < ( ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) + ( Z ` X ) ) ) |
| 588 |
207
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 589 |
216
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Z ` X ) e. CC ) |
| 590 |
588 589
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) + ( Z ` X ) ) = ( Q ` ( i + 1 ) ) ) |
| 591 |
590
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) + ( Z ` X ) ) = ( Q ` ( i + 1 ) ) ) |
| 592 |
587 591
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) < ( Q ` ( i + 1 ) ) ) |
| 593 |
592
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) < ( Q ` ( i + 1 ) ) ) |
| 594 |
558 559 563 583 593
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 595 |
557 594
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( y + ( Z ` X ) ) e. D ) |
| 596 |
555 443
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 597 |
555 595 596 297
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) |
| 598 |
554 597
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) -> y e. D ) |
| 599 |
598
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> A. y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) y e. D ) |
| 600 |
|
dfss3 |
|- ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) C_ D <-> A. y e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) y e. D ) |
| 601 |
599 600
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) C_ D ) |
| 602 |
|
breq2 |
|- ( y = ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) -> ( X < y <-> X < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) |
| 603 |
|
oveq2 |
|- ( y = ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) -> ( X (,) y ) = ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) ) |
| 604 |
603
|
sseq1d |
|- ( y = ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) -> ( ( X (,) y ) C_ D <-> ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) C_ D ) ) |
| 605 |
602 604
|
anbi12d |
|- ( y = ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) -> ( ( X < y /\ ( X (,) y ) C_ D ) <-> ( X < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) /\ ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) C_ D ) ) ) |
| 606 |
605
|
rspcev |
|- ( ( ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) e. RR /\ ( X < ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) /\ ( X (,) ( ( Q ` ( i + 1 ) ) - ( Z ` X ) ) ) C_ D ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 607 |
538 551 601 606
|
syl12anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 608 |
607
|
3exp |
|- ( ph -> ( i e. ( 0 ..^ M ) -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) ) ) |
| 609 |
608
|
adantr |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( i e. ( 0 ..^ M ) -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) ) ) |
| 610 |
609
|
rexlimdv |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) ) |
| 611 |
536 610
|
mpd |
|- ( ( ph /\ ( E ` X ) =/= B ) -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 612 |
471 611
|
pm2.61dane |
|- ( ph -> E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) |
| 613 |
311 612
|
jca |
|- ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ D ) /\ E. y e. RR ( X < y /\ ( X (,) y ) C_ D ) ) ) |