| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem42.b |  |-  ( ph -> B e. RR ) | 
						
							| 2 |  | fourierdlem42.c |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | fourierdlem42.bc |  |-  ( ph -> B < C ) | 
						
							| 4 |  | fourierdlem42.t |  |-  T = ( C - B ) | 
						
							| 5 |  | fourierdlem42.a |  |-  ( ph -> A C_ ( B [,] C ) ) | 
						
							| 6 |  | fourierdlem42.af |  |-  ( ph -> A e. Fin ) | 
						
							| 7 |  | fourierdlem42.ba |  |-  ( ph -> B e. A ) | 
						
							| 8 |  | fourierdlem42.ca |  |-  ( ph -> C e. A ) | 
						
							| 9 |  | fourierdlem42.d |  |-  D = ( abs o. - ) | 
						
							| 10 |  | fourierdlem42.i |  |-  I = ( ( A X. A ) \ _I ) | 
						
							| 11 |  | fourierdlem42.r |  |-  R = ran ( D |` I ) | 
						
							| 12 |  | fourierdlem42.e |  |-  E = inf ( R , RR , < ) | 
						
							| 13 |  | fourierdlem42.x |  |-  ( ph -> X e. RR ) | 
						
							| 14 |  | fourierdlem42.y |  |-  ( ph -> Y e. RR ) | 
						
							| 15 |  | fourierdlem42.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 16 |  | fourierdlem42.k |  |-  K = ( J |`t ( X [,] Y ) ) | 
						
							| 17 |  | fourierdlem42.h |  |-  H = { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } | 
						
							| 18 |  | fourierdlem42.15 |  |-  ( ps <-> ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 19 | 15 16 | icccmp |  |-  ( ( X e. RR /\ Y e. RR ) -> K e. Comp ) | 
						
							| 20 | 13 14 19 | syl2anc |  |-  ( ph -> K e. Comp ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ -. H e. Fin ) -> K e. Comp ) | 
						
							| 22 |  | ssrab2 |  |-  { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } C_ ( X [,] Y ) | 
						
							| 23 | 22 | a1i |  |-  ( ph -> { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } C_ ( X [,] Y ) ) | 
						
							| 24 | 17 23 | eqsstrid |  |-  ( ph -> H C_ ( X [,] Y ) ) | 
						
							| 25 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 26 | 15 25 | eqeltri |  |-  J e. Top | 
						
							| 27 | 13 14 | iccssred |  |-  ( ph -> ( X [,] Y ) C_ RR ) | 
						
							| 28 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 29 | 15 | unieqi |  |-  U. J = U. ( topGen ` ran (,) ) | 
						
							| 30 | 28 29 | eqtr4i |  |-  RR = U. J | 
						
							| 31 | 30 | restuni |  |-  ( ( J e. Top /\ ( X [,] Y ) C_ RR ) -> ( X [,] Y ) = U. ( J |`t ( X [,] Y ) ) ) | 
						
							| 32 | 26 27 31 | sylancr |  |-  ( ph -> ( X [,] Y ) = U. ( J |`t ( X [,] Y ) ) ) | 
						
							| 33 | 16 | unieqi |  |-  U. K = U. ( J |`t ( X [,] Y ) ) | 
						
							| 34 | 33 | eqcomi |  |-  U. ( J |`t ( X [,] Y ) ) = U. K | 
						
							| 35 | 32 34 | eqtrdi |  |-  ( ph -> ( X [,] Y ) = U. K ) | 
						
							| 36 | 24 35 | sseqtrd |  |-  ( ph -> H C_ U. K ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ -. H e. Fin ) -> H C_ U. K ) | 
						
							| 38 |  | simpr |  |-  ( ( ph /\ -. H e. Fin ) -> -. H e. Fin ) | 
						
							| 39 |  | eqid |  |-  U. K = U. K | 
						
							| 40 | 39 | bwth |  |-  ( ( K e. Comp /\ H C_ U. K /\ -. H e. Fin ) -> E. x e. U. K x e. ( ( limPt ` K ) ` H ) ) | 
						
							| 41 | 21 37 38 40 | syl3anc |  |-  ( ( ph /\ -. H e. Fin ) -> E. x e. U. K x e. ( ( limPt ` K ) ` H ) ) | 
						
							| 42 | 24 27 | sstrd |  |-  ( ph -> H C_ RR ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ph /\ x e. U. K ) /\ x e. ( ( limPt ` J ) ` H ) ) -> H C_ RR ) | 
						
							| 44 |  | ne0i |  |-  ( x e. ( ( limPt ` J ) ` H ) -> ( ( limPt ` J ) ` H ) =/= (/) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ph /\ x e. U. K ) /\ x e. ( ( limPt ` J ) ` H ) ) -> ( ( limPt ` J ) ` H ) =/= (/) ) | 
						
							| 46 |  | absf |  |-  abs : CC --> RR | 
						
							| 47 |  | ffn |  |-  ( abs : CC --> RR -> abs Fn CC ) | 
						
							| 48 | 46 47 | ax-mp |  |-  abs Fn CC | 
						
							| 49 |  | subf |  |-  - : ( CC X. CC ) --> CC | 
						
							| 50 |  | ffn |  |-  ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) | 
						
							| 51 | 49 50 | ax-mp |  |-  - Fn ( CC X. CC ) | 
						
							| 52 |  | frn |  |-  ( - : ( CC X. CC ) --> CC -> ran - C_ CC ) | 
						
							| 53 | 49 52 | ax-mp |  |-  ran - C_ CC | 
						
							| 54 |  | fnco |  |-  ( ( abs Fn CC /\ - Fn ( CC X. CC ) /\ ran - C_ CC ) -> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 55 | 48 51 53 54 | mp3an |  |-  ( abs o. - ) Fn ( CC X. CC ) | 
						
							| 56 | 9 | fneq1i |  |-  ( D Fn ( CC X. CC ) <-> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 57 | 55 56 | mpbir |  |-  D Fn ( CC X. CC ) | 
						
							| 58 | 1 2 | iccssred |  |-  ( ph -> ( B [,] C ) C_ RR ) | 
						
							| 59 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 60 | 58 59 | sstrdi |  |-  ( ph -> ( B [,] C ) C_ CC ) | 
						
							| 61 | 5 60 | sstrd |  |-  ( ph -> A C_ CC ) | 
						
							| 62 |  | xpss12 |  |-  ( ( A C_ CC /\ A C_ CC ) -> ( A X. A ) C_ ( CC X. CC ) ) | 
						
							| 63 | 61 61 62 | syl2anc |  |-  ( ph -> ( A X. A ) C_ ( CC X. CC ) ) | 
						
							| 64 | 63 | ssdifssd |  |-  ( ph -> ( ( A X. A ) \ _I ) C_ ( CC X. CC ) ) | 
						
							| 65 | 10 64 | eqsstrid |  |-  ( ph -> I C_ ( CC X. CC ) ) | 
						
							| 66 |  | fnssres |  |-  ( ( D Fn ( CC X. CC ) /\ I C_ ( CC X. CC ) ) -> ( D |` I ) Fn I ) | 
						
							| 67 | 57 65 66 | sylancr |  |-  ( ph -> ( D |` I ) Fn I ) | 
						
							| 68 |  | fvres |  |-  ( x e. I -> ( ( D |` I ) ` x ) = ( D ` x ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ x e. I ) -> ( ( D |` I ) ` x ) = ( D ` x ) ) | 
						
							| 70 | 9 | fveq1i |  |-  ( D ` x ) = ( ( abs o. - ) ` x ) | 
						
							| 71 | 70 | a1i |  |-  ( ( ph /\ x e. I ) -> ( D ` x ) = ( ( abs o. - ) ` x ) ) | 
						
							| 72 |  | ffun |  |-  ( - : ( CC X. CC ) --> CC -> Fun - ) | 
						
							| 73 | 49 72 | ax-mp |  |-  Fun - | 
						
							| 74 | 65 | sselda |  |-  ( ( ph /\ x e. I ) -> x e. ( CC X. CC ) ) | 
						
							| 75 | 49 | fdmi |  |-  dom - = ( CC X. CC ) | 
						
							| 76 | 74 75 | eleqtrrdi |  |-  ( ( ph /\ x e. I ) -> x e. dom - ) | 
						
							| 77 |  | fvco |  |-  ( ( Fun - /\ x e. dom - ) -> ( ( abs o. - ) ` x ) = ( abs ` ( - ` x ) ) ) | 
						
							| 78 | 73 76 77 | sylancr |  |-  ( ( ph /\ x e. I ) -> ( ( abs o. - ) ` x ) = ( abs ` ( - ` x ) ) ) | 
						
							| 79 | 69 71 78 | 3eqtrd |  |-  ( ( ph /\ x e. I ) -> ( ( D |` I ) ` x ) = ( abs ` ( - ` x ) ) ) | 
						
							| 80 | 49 | a1i |  |-  ( ( ph /\ x e. I ) -> - : ( CC X. CC ) --> CC ) | 
						
							| 81 | 80 74 | ffvelcdmd |  |-  ( ( ph /\ x e. I ) -> ( - ` x ) e. CC ) | 
						
							| 82 | 81 | abscld |  |-  ( ( ph /\ x e. I ) -> ( abs ` ( - ` x ) ) e. RR ) | 
						
							| 83 | 79 82 | eqeltrd |  |-  ( ( ph /\ x e. I ) -> ( ( D |` I ) ` x ) e. RR ) | 
						
							| 84 |  | elxp2 |  |-  ( x e. ( CC X. CC ) <-> E. y e. CC E. z e. CC x = <. y , z >. ) | 
						
							| 85 | 74 84 | sylib |  |-  ( ( ph /\ x e. I ) -> E. y e. CC E. z e. CC x = <. y , z >. ) | 
						
							| 86 |  | fveq2 |  |-  ( x = <. y , z >. -> ( - ` x ) = ( - ` <. y , z >. ) ) | 
						
							| 87 | 86 | 3ad2ant3 |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> ( - ` x ) = ( - ` <. y , z >. ) ) | 
						
							| 88 |  | df-ov |  |-  ( y - z ) = ( - ` <. y , z >. ) | 
						
							| 89 |  | simp1l |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> ph ) | 
						
							| 90 |  | simpr |  |-  ( ( x e. I /\ x = <. y , z >. ) -> x = <. y , z >. ) | 
						
							| 91 |  | simpl |  |-  ( ( x e. I /\ x = <. y , z >. ) -> x e. I ) | 
						
							| 92 | 90 91 | eqeltrrd |  |-  ( ( x e. I /\ x = <. y , z >. ) -> <. y , z >. e. I ) | 
						
							| 93 | 92 | adantll |  |-  ( ( ( ph /\ x e. I ) /\ x = <. y , z >. ) -> <. y , z >. e. I ) | 
						
							| 94 | 93 | 3adant2 |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> <. y , z >. e. I ) | 
						
							| 95 | 61 | adantr |  |-  ( ( ph /\ <. y , z >. e. I ) -> A C_ CC ) | 
						
							| 96 | 10 | eleq2i |  |-  ( <. y , z >. e. I <-> <. y , z >. e. ( ( A X. A ) \ _I ) ) | 
						
							| 97 |  | eldif |  |-  ( <. y , z >. e. ( ( A X. A ) \ _I ) <-> ( <. y , z >. e. ( A X. A ) /\ -. <. y , z >. e. _I ) ) | 
						
							| 98 | 96 97 | sylbb |  |-  ( <. y , z >. e. I -> ( <. y , z >. e. ( A X. A ) /\ -. <. y , z >. e. _I ) ) | 
						
							| 99 | 98 | simpld |  |-  ( <. y , z >. e. I -> <. y , z >. e. ( A X. A ) ) | 
						
							| 100 |  | opelxp |  |-  ( <. y , z >. e. ( A X. A ) <-> ( y e. A /\ z e. A ) ) | 
						
							| 101 | 99 100 | sylib |  |-  ( <. y , z >. e. I -> ( y e. A /\ z e. A ) ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ph /\ <. y , z >. e. I ) -> ( y e. A /\ z e. A ) ) | 
						
							| 103 | 102 | simpld |  |-  ( ( ph /\ <. y , z >. e. I ) -> y e. A ) | 
						
							| 104 | 95 103 | sseldd |  |-  ( ( ph /\ <. y , z >. e. I ) -> y e. CC ) | 
						
							| 105 | 102 | simprd |  |-  ( ( ph /\ <. y , z >. e. I ) -> z e. A ) | 
						
							| 106 | 95 105 | sseldd |  |-  ( ( ph /\ <. y , z >. e. I ) -> z e. CC ) | 
						
							| 107 | 98 | simprd |  |-  ( <. y , z >. e. I -> -. <. y , z >. e. _I ) | 
						
							| 108 |  | df-br |  |-  ( y _I z <-> <. y , z >. e. _I ) | 
						
							| 109 | 107 108 | sylnibr |  |-  ( <. y , z >. e. I -> -. y _I z ) | 
						
							| 110 |  | vex |  |-  z e. _V | 
						
							| 111 | 110 | ideq |  |-  ( y _I z <-> y = z ) | 
						
							| 112 | 109 111 | sylnib |  |-  ( <. y , z >. e. I -> -. y = z ) | 
						
							| 113 | 112 | neqned |  |-  ( <. y , z >. e. I -> y =/= z ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ph /\ <. y , z >. e. I ) -> y =/= z ) | 
						
							| 115 | 104 106 114 | subne0d |  |-  ( ( ph /\ <. y , z >. e. I ) -> ( y - z ) =/= 0 ) | 
						
							| 116 | 89 94 115 | syl2anc |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> ( y - z ) =/= 0 ) | 
						
							| 117 | 88 116 | eqnetrrid |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> ( - ` <. y , z >. ) =/= 0 ) | 
						
							| 118 | 87 117 | eqnetrd |  |-  ( ( ( ph /\ x e. I ) /\ ( y e. CC /\ z e. CC ) /\ x = <. y , z >. ) -> ( - ` x ) =/= 0 ) | 
						
							| 119 | 118 | 3exp |  |-  ( ( ph /\ x e. I ) -> ( ( y e. CC /\ z e. CC ) -> ( x = <. y , z >. -> ( - ` x ) =/= 0 ) ) ) | 
						
							| 120 | 119 | rexlimdvv |  |-  ( ( ph /\ x e. I ) -> ( E. y e. CC E. z e. CC x = <. y , z >. -> ( - ` x ) =/= 0 ) ) | 
						
							| 121 | 85 120 | mpd |  |-  ( ( ph /\ x e. I ) -> ( - ` x ) =/= 0 ) | 
						
							| 122 |  | absgt0 |  |-  ( ( - ` x ) e. CC -> ( ( - ` x ) =/= 0 <-> 0 < ( abs ` ( - ` x ) ) ) ) | 
						
							| 123 | 81 122 | syl |  |-  ( ( ph /\ x e. I ) -> ( ( - ` x ) =/= 0 <-> 0 < ( abs ` ( - ` x ) ) ) ) | 
						
							| 124 | 121 123 | mpbid |  |-  ( ( ph /\ x e. I ) -> 0 < ( abs ` ( - ` x ) ) ) | 
						
							| 125 | 79 | eqcomd |  |-  ( ( ph /\ x e. I ) -> ( abs ` ( - ` x ) ) = ( ( D |` I ) ` x ) ) | 
						
							| 126 | 124 125 | breqtrd |  |-  ( ( ph /\ x e. I ) -> 0 < ( ( D |` I ) ` x ) ) | 
						
							| 127 | 83 126 | elrpd |  |-  ( ( ph /\ x e. I ) -> ( ( D |` I ) ` x ) e. RR+ ) | 
						
							| 128 | 127 | ralrimiva |  |-  ( ph -> A. x e. I ( ( D |` I ) ` x ) e. RR+ ) | 
						
							| 129 |  | fnfvrnss |  |-  ( ( ( D |` I ) Fn I /\ A. x e. I ( ( D |` I ) ` x ) e. RR+ ) -> ran ( D |` I ) C_ RR+ ) | 
						
							| 130 | 67 128 129 | syl2anc |  |-  ( ph -> ran ( D |` I ) C_ RR+ ) | 
						
							| 131 | 11 130 | eqsstrid |  |-  ( ph -> R C_ RR+ ) | 
						
							| 132 |  | ltso |  |-  < Or RR | 
						
							| 133 | 132 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 134 |  | xpfi |  |-  ( ( A e. Fin /\ A e. Fin ) -> ( A X. A ) e. Fin ) | 
						
							| 135 | 6 6 134 | syl2anc |  |-  ( ph -> ( A X. A ) e. Fin ) | 
						
							| 136 |  | diffi |  |-  ( ( A X. A ) e. Fin -> ( ( A X. A ) \ _I ) e. Fin ) | 
						
							| 137 | 135 136 | syl |  |-  ( ph -> ( ( A X. A ) \ _I ) e. Fin ) | 
						
							| 138 | 10 137 | eqeltrid |  |-  ( ph -> I e. Fin ) | 
						
							| 139 |  | fnfi |  |-  ( ( ( D |` I ) Fn I /\ I e. Fin ) -> ( D |` I ) e. Fin ) | 
						
							| 140 | 67 138 139 | syl2anc |  |-  ( ph -> ( D |` I ) e. Fin ) | 
						
							| 141 |  | rnfi |  |-  ( ( D |` I ) e. Fin -> ran ( D |` I ) e. Fin ) | 
						
							| 142 | 140 141 | syl |  |-  ( ph -> ran ( D |` I ) e. Fin ) | 
						
							| 143 | 11 142 | eqeltrid |  |-  ( ph -> R e. Fin ) | 
						
							| 144 | 11 | a1i |  |-  ( ph -> R = ran ( D |` I ) ) | 
						
							| 145 | 9 | a1i |  |-  ( ph -> D = ( abs o. - ) ) | 
						
							| 146 | 145 | reseq1d |  |-  ( ph -> ( D |` I ) = ( ( abs o. - ) |` I ) ) | 
						
							| 147 | 146 | fveq1d |  |-  ( ph -> ( ( D |` I ) ` <. B , C >. ) = ( ( ( abs o. - ) |` I ) ` <. B , C >. ) ) | 
						
							| 148 |  | opelxp |  |-  ( <. B , C >. e. ( A X. A ) <-> ( B e. A /\ C e. A ) ) | 
						
							| 149 | 7 8 148 | sylanbrc |  |-  ( ph -> <. B , C >. e. ( A X. A ) ) | 
						
							| 150 | 1 3 | ltned |  |-  ( ph -> B =/= C ) | 
						
							| 151 | 150 | neneqd |  |-  ( ph -> -. B = C ) | 
						
							| 152 |  | ideqg |  |-  ( C e. A -> ( B _I C <-> B = C ) ) | 
						
							| 153 | 8 152 | syl |  |-  ( ph -> ( B _I C <-> B = C ) ) | 
						
							| 154 | 151 153 | mtbird |  |-  ( ph -> -. B _I C ) | 
						
							| 155 |  | df-br |  |-  ( B _I C <-> <. B , C >. e. _I ) | 
						
							| 156 | 154 155 | sylnib |  |-  ( ph -> -. <. B , C >. e. _I ) | 
						
							| 157 | 149 156 | eldifd |  |-  ( ph -> <. B , C >. e. ( ( A X. A ) \ _I ) ) | 
						
							| 158 | 157 10 | eleqtrrdi |  |-  ( ph -> <. B , C >. e. I ) | 
						
							| 159 |  | fvres |  |-  ( <. B , C >. e. I -> ( ( ( abs o. - ) |` I ) ` <. B , C >. ) = ( ( abs o. - ) ` <. B , C >. ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ph -> ( ( ( abs o. - ) |` I ) ` <. B , C >. ) = ( ( abs o. - ) ` <. B , C >. ) ) | 
						
							| 161 | 1 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 162 | 2 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 163 |  | opelxp |  |-  ( <. B , C >. e. ( CC X. CC ) <-> ( B e. CC /\ C e. CC ) ) | 
						
							| 164 | 161 162 163 | sylanbrc |  |-  ( ph -> <. B , C >. e. ( CC X. CC ) ) | 
						
							| 165 | 164 75 | eleqtrrdi |  |-  ( ph -> <. B , C >. e. dom - ) | 
						
							| 166 |  | fvco |  |-  ( ( Fun - /\ <. B , C >. e. dom - ) -> ( ( abs o. - ) ` <. B , C >. ) = ( abs ` ( - ` <. B , C >. ) ) ) | 
						
							| 167 | 73 165 166 | sylancr |  |-  ( ph -> ( ( abs o. - ) ` <. B , C >. ) = ( abs ` ( - ` <. B , C >. ) ) ) | 
						
							| 168 |  | df-ov |  |-  ( B - C ) = ( - ` <. B , C >. ) | 
						
							| 169 | 168 | eqcomi |  |-  ( - ` <. B , C >. ) = ( B - C ) | 
						
							| 170 | 169 | a1i |  |-  ( ph -> ( - ` <. B , C >. ) = ( B - C ) ) | 
						
							| 171 | 170 | fveq2d |  |-  ( ph -> ( abs ` ( - ` <. B , C >. ) ) = ( abs ` ( B - C ) ) ) | 
						
							| 172 | 167 171 | eqtrd |  |-  ( ph -> ( ( abs o. - ) ` <. B , C >. ) = ( abs ` ( B - C ) ) ) | 
						
							| 173 | 147 160 172 | 3eqtrrd |  |-  ( ph -> ( abs ` ( B - C ) ) = ( ( D |` I ) ` <. B , C >. ) ) | 
						
							| 174 |  | fnfvelrn |  |-  ( ( ( D |` I ) Fn I /\ <. B , C >. e. I ) -> ( ( D |` I ) ` <. B , C >. ) e. ran ( D |` I ) ) | 
						
							| 175 | 67 158 174 | syl2anc |  |-  ( ph -> ( ( D |` I ) ` <. B , C >. ) e. ran ( D |` I ) ) | 
						
							| 176 | 173 175 | eqeltrd |  |-  ( ph -> ( abs ` ( B - C ) ) e. ran ( D |` I ) ) | 
						
							| 177 |  | ne0i |  |-  ( ( abs ` ( B - C ) ) e. ran ( D |` I ) -> ran ( D |` I ) =/= (/) ) | 
						
							| 178 | 176 177 | syl |  |-  ( ph -> ran ( D |` I ) =/= (/) ) | 
						
							| 179 | 144 178 | eqnetrd |  |-  ( ph -> R =/= (/) ) | 
						
							| 180 |  | resss |  |-  ( D |` I ) C_ D | 
						
							| 181 |  | rnss |  |-  ( ( D |` I ) C_ D -> ran ( D |` I ) C_ ran D ) | 
						
							| 182 | 180 181 | ax-mp |  |-  ran ( D |` I ) C_ ran D | 
						
							| 183 | 9 | rneqi |  |-  ran D = ran ( abs o. - ) | 
						
							| 184 |  | rncoss |  |-  ran ( abs o. - ) C_ ran abs | 
						
							| 185 |  | frn |  |-  ( abs : CC --> RR -> ran abs C_ RR ) | 
						
							| 186 | 46 185 | ax-mp |  |-  ran abs C_ RR | 
						
							| 187 | 184 186 | sstri |  |-  ran ( abs o. - ) C_ RR | 
						
							| 188 | 183 187 | eqsstri |  |-  ran D C_ RR | 
						
							| 189 | 182 188 | sstri |  |-  ran ( D |` I ) C_ RR | 
						
							| 190 | 11 189 | eqsstri |  |-  R C_ RR | 
						
							| 191 | 190 | a1i |  |-  ( ph -> R C_ RR ) | 
						
							| 192 |  | fiinfcl |  |-  ( ( < Or RR /\ ( R e. Fin /\ R =/= (/) /\ R C_ RR ) ) -> inf ( R , RR , < ) e. R ) | 
						
							| 193 | 133 143 179 191 192 | syl13anc |  |-  ( ph -> inf ( R , RR , < ) e. R ) | 
						
							| 194 | 131 193 | sseldd |  |-  ( ph -> inf ( R , RR , < ) e. RR+ ) | 
						
							| 195 | 12 194 | eqeltrid |  |-  ( ph -> E e. RR+ ) | 
						
							| 196 | 195 | ad2antrr |  |-  ( ( ( ph /\ x e. U. K ) /\ x e. ( ( limPt ` J ) ` H ) ) -> E e. RR+ ) | 
						
							| 197 | 15 43 45 196 | lptre2pt |  |-  ( ( ( ph /\ x e. U. K ) /\ x e. ( ( limPt ` J ) ` H ) ) -> E. y e. H E. z e. H ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 198 |  | simpll |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> ph ) | 
						
							| 199 | 42 | sselda |  |-  ( ( ph /\ y e. H ) -> y e. RR ) | 
						
							| 200 | 199 | adantrr |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> y e. RR ) | 
						
							| 201 | 200 | adantr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> y e. RR ) | 
						
							| 202 | 42 | sselda |  |-  ( ( ph /\ z e. H ) -> z e. RR ) | 
						
							| 203 | 202 | adantrl |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> z e. RR ) | 
						
							| 204 | 203 | adantr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> z e. RR ) | 
						
							| 205 |  | simpr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> y =/= z ) | 
						
							| 206 | 201 204 205 | 3jca |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> ( y e. RR /\ z e. RR /\ y =/= z ) ) | 
						
							| 207 | 17 | eleq2i |  |-  ( y e. H <-> y e. { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } ) | 
						
							| 208 |  | oveq1 |  |-  ( x = y -> ( x + ( k x. T ) ) = ( y + ( k x. T ) ) ) | 
						
							| 209 | 208 | eleq1d |  |-  ( x = y -> ( ( x + ( k x. T ) ) e. A <-> ( y + ( k x. T ) ) e. A ) ) | 
						
							| 210 | 209 | rexbidv |  |-  ( x = y -> ( E. k e. ZZ ( x + ( k x. T ) ) e. A <-> E. k e. ZZ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 211 |  | oveq1 |  |-  ( k = j -> ( k x. T ) = ( j x. T ) ) | 
						
							| 212 | 211 | oveq2d |  |-  ( k = j -> ( y + ( k x. T ) ) = ( y + ( j x. T ) ) ) | 
						
							| 213 | 212 | eleq1d |  |-  ( k = j -> ( ( y + ( k x. T ) ) e. A <-> ( y + ( j x. T ) ) e. A ) ) | 
						
							| 214 | 213 | cbvrexvw |  |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. A <-> E. j e. ZZ ( y + ( j x. T ) ) e. A ) | 
						
							| 215 | 210 214 | bitrdi |  |-  ( x = y -> ( E. k e. ZZ ( x + ( k x. T ) ) e. A <-> E. j e. ZZ ( y + ( j x. T ) ) e. A ) ) | 
						
							| 216 | 215 | elrab |  |-  ( y e. { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } <-> ( y e. ( X [,] Y ) /\ E. j e. ZZ ( y + ( j x. T ) ) e. A ) ) | 
						
							| 217 | 207 216 | sylbb |  |-  ( y e. H -> ( y e. ( X [,] Y ) /\ E. j e. ZZ ( y + ( j x. T ) ) e. A ) ) | 
						
							| 218 | 217 | simprd |  |-  ( y e. H -> E. j e. ZZ ( y + ( j x. T ) ) e. A ) | 
						
							| 219 | 218 | adantr |  |-  ( ( y e. H /\ z e. H ) -> E. j e. ZZ ( y + ( j x. T ) ) e. A ) | 
						
							| 220 | 17 | eleq2i |  |-  ( z e. H <-> z e. { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } ) | 
						
							| 221 |  | oveq1 |  |-  ( x = z -> ( x + ( k x. T ) ) = ( z + ( k x. T ) ) ) | 
						
							| 222 | 221 | eleq1d |  |-  ( x = z -> ( ( x + ( k x. T ) ) e. A <-> ( z + ( k x. T ) ) e. A ) ) | 
						
							| 223 | 222 | rexbidv |  |-  ( x = z -> ( E. k e. ZZ ( x + ( k x. T ) ) e. A <-> E. k e. ZZ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 224 | 223 | elrab |  |-  ( z e. { x e. ( X [,] Y ) | E. k e. ZZ ( x + ( k x. T ) ) e. A } <-> ( z e. ( X [,] Y ) /\ E. k e. ZZ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 225 | 220 224 | sylbb |  |-  ( z e. H -> ( z e. ( X [,] Y ) /\ E. k e. ZZ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 226 | 225 | simprd |  |-  ( z e. H -> E. k e. ZZ ( z + ( k x. T ) ) e. A ) | 
						
							| 227 | 226 | adantl |  |-  ( ( y e. H /\ z e. H ) -> E. k e. ZZ ( z + ( k x. T ) ) e. A ) | 
						
							| 228 |  | reeanv |  |-  ( E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) <-> ( E. j e. ZZ ( y + ( j x. T ) ) e. A /\ E. k e. ZZ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 229 | 219 227 228 | sylanbrc |  |-  ( ( y e. H /\ z e. H ) -> E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 230 | 229 | ad2antlr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 231 |  | simplll |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ y < z ) -> ph ) | 
						
							| 232 |  | simpl1 |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ y < z ) -> y e. RR ) | 
						
							| 233 |  | simpl2 |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ y < z ) -> z e. RR ) | 
						
							| 234 |  | simpr |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ y < z ) -> y < z ) | 
						
							| 235 | 232 233 234 | 3jca |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ y < z ) -> ( y e. RR /\ z e. RR /\ y < z ) ) | 
						
							| 236 | 235 | adantll |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ y < z ) -> ( y e. RR /\ z e. RR /\ y < z ) ) | 
						
							| 237 | 236 | adantlr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ y < z ) -> ( y e. RR /\ z e. RR /\ y < z ) ) | 
						
							| 238 |  | simplr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ y < z ) -> E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) | 
						
							| 239 |  | eleq1 |  |-  ( b = z -> ( b e. RR <-> z e. RR ) ) | 
						
							| 240 |  | breq2 |  |-  ( b = z -> ( y < b <-> y < z ) ) | 
						
							| 241 | 239 240 | 3anbi23d |  |-  ( b = z -> ( ( y e. RR /\ b e. RR /\ y < b ) <-> ( y e. RR /\ z e. RR /\ y < z ) ) ) | 
						
							| 242 | 241 | anbi2d |  |-  ( b = z -> ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) <-> ( ph /\ ( y e. RR /\ z e. RR /\ y < z ) ) ) ) | 
						
							| 243 |  | oveq1 |  |-  ( b = z -> ( b + ( k x. T ) ) = ( z + ( k x. T ) ) ) | 
						
							| 244 | 243 | eleq1d |  |-  ( b = z -> ( ( b + ( k x. T ) ) e. A <-> ( z + ( k x. T ) ) e. A ) ) | 
						
							| 245 | 244 | anbi2d |  |-  ( b = z -> ( ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) ) | 
						
							| 246 | 245 | 2rexbidv |  |-  ( b = z -> ( E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) ) | 
						
							| 247 | 242 246 | anbi12d |  |-  ( b = z -> ( ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) <-> ( ( ph /\ ( y e. RR /\ z e. RR /\ y < z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) ) ) | 
						
							| 248 |  | oveq2 |  |-  ( b = z -> ( y - b ) = ( y - z ) ) | 
						
							| 249 | 248 | fveq2d |  |-  ( b = z -> ( abs ` ( y - b ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 250 | 249 | breq2d |  |-  ( b = z -> ( E <_ ( abs ` ( y - b ) ) <-> E <_ ( abs ` ( y - z ) ) ) ) | 
						
							| 251 | 247 250 | imbi12d |  |-  ( b = z -> ( ( ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - b ) ) ) <-> ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y < z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - z ) ) ) ) ) | 
						
							| 252 |  | eleq1 |  |-  ( a = y -> ( a e. RR <-> y e. RR ) ) | 
						
							| 253 |  | breq1 |  |-  ( a = y -> ( a < b <-> y < b ) ) | 
						
							| 254 | 252 253 | 3anbi13d |  |-  ( a = y -> ( ( a e. RR /\ b e. RR /\ a < b ) <-> ( y e. RR /\ b e. RR /\ y < b ) ) ) | 
						
							| 255 | 254 | anbi2d |  |-  ( a = y -> ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) <-> ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) ) ) | 
						
							| 256 |  | oveq1 |  |-  ( a = y -> ( a + ( j x. T ) ) = ( y + ( j x. T ) ) ) | 
						
							| 257 | 256 | eleq1d |  |-  ( a = y -> ( ( a + ( j x. T ) ) e. A <-> ( y + ( j x. T ) ) e. A ) ) | 
						
							| 258 | 257 | anbi1d |  |-  ( a = y -> ( ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 259 | 258 | 2rexbidv |  |-  ( a = y -> ( E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 260 | 255 259 | anbi12d |  |-  ( a = y -> ( ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) <-> ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) ) | 
						
							| 261 |  | oveq1 |  |-  ( a = y -> ( a - b ) = ( y - b ) ) | 
						
							| 262 | 261 | fveq2d |  |-  ( a = y -> ( abs ` ( a - b ) ) = ( abs ` ( y - b ) ) ) | 
						
							| 263 | 262 | breq2d |  |-  ( a = y -> ( E <_ ( abs ` ( a - b ) ) <-> E <_ ( abs ` ( y - b ) ) ) ) | 
						
							| 264 | 260 263 | imbi12d |  |-  ( a = y -> ( ( ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( a - b ) ) ) <-> ( ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - b ) ) ) ) ) | 
						
							| 265 | 18 | simprbi |  |-  ( ps -> E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) | 
						
							| 266 | 18 | biimpi |  |-  ( ps -> ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 267 | 266 | simpld |  |-  ( ps -> ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) ) | 
						
							| 268 | 267 | simpld |  |-  ( ps -> ph ) | 
						
							| 269 | 268 1 | syl |  |-  ( ps -> B e. RR ) | 
						
							| 270 | 269 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> B e. RR ) | 
						
							| 271 | 268 2 | syl |  |-  ( ps -> C e. RR ) | 
						
							| 272 | 271 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> C e. RR ) | 
						
							| 273 | 268 5 | syl |  |-  ( ps -> A C_ ( B [,] C ) ) | 
						
							| 274 | 273 | sselda |  |-  ( ( ps /\ ( b + ( k x. T ) ) e. A ) -> ( b + ( k x. T ) ) e. ( B [,] C ) ) | 
						
							| 275 | 274 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b + ( k x. T ) ) e. ( B [,] C ) ) | 
						
							| 276 | 273 | sselda |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> ( a + ( j x. T ) ) e. ( B [,] C ) ) | 
						
							| 277 | 276 | adantrr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. ( B [,] C ) ) | 
						
							| 278 | 270 272 275 277 | iccsuble |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ ( C - B ) ) | 
						
							| 279 | 278 4 | breqtrrdi |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 280 | 279 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 281 | 280 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. k <_ j ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 282 |  | simpr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> -. k <_ j ) | 
						
							| 283 |  | zre |  |-  ( j e. ZZ -> j e. RR ) | 
						
							| 284 | 283 | adantr |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> j e. RR ) | 
						
							| 285 | 284 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> j e. RR ) | 
						
							| 286 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 287 | 286 | adantl |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> k e. RR ) | 
						
							| 288 | 287 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> k e. RR ) | 
						
							| 289 | 285 288 | ltnled |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> ( j < k <-> -. k <_ j ) ) | 
						
							| 290 | 282 289 | mpbird |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> j < k ) | 
						
							| 291 | 2 1 | resubcld |  |-  ( ph -> ( C - B ) e. RR ) | 
						
							| 292 | 4 291 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 293 | 268 292 | syl |  |-  ( ps -> T e. RR ) | 
						
							| 294 | 293 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> T e. RR ) | 
						
							| 295 | 287 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> k e. RR ) | 
						
							| 296 | 284 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> j e. RR ) | 
						
							| 297 | 295 296 | resubcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( k - j ) e. RR ) | 
						
							| 298 | 293 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> T e. RR ) | 
						
							| 299 | 297 298 | remulcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) x. T ) e. RR ) | 
						
							| 300 | 299 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( ( k - j ) x. T ) e. RR ) | 
						
							| 301 | 267 | simprd |  |-  ( ps -> ( a e. RR /\ b e. RR /\ a < b ) ) | 
						
							| 302 | 301 | simp2d |  |-  ( ps -> b e. RR ) | 
						
							| 303 | 302 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> b e. RR ) | 
						
							| 304 | 286 | adantl |  |-  ( ( ps /\ k e. ZZ ) -> k e. RR ) | 
						
							| 305 | 293 | adantr |  |-  ( ( ps /\ k e. ZZ ) -> T e. RR ) | 
						
							| 306 | 304 305 | remulcld |  |-  ( ( ps /\ k e. ZZ ) -> ( k x. T ) e. RR ) | 
						
							| 307 | 306 | adantrl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( k x. T ) e. RR ) | 
						
							| 308 | 303 307 | readdcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 309 | 301 | simp1d |  |-  ( ps -> a e. RR ) | 
						
							| 310 | 309 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> a e. RR ) | 
						
							| 311 | 283 | adantl |  |-  ( ( ps /\ j e. ZZ ) -> j e. RR ) | 
						
							| 312 | 293 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> T e. RR ) | 
						
							| 313 | 311 312 | remulcld |  |-  ( ( ps /\ j e. ZZ ) -> ( j x. T ) e. RR ) | 
						
							| 314 | 313 | adantrr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( j x. T ) e. RR ) | 
						
							| 315 | 310 314 | readdcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 316 | 308 315 | resubcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 317 | 316 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 318 | 293 | recnd |  |-  ( ps -> T e. CC ) | 
						
							| 319 | 318 | mullidd |  |-  ( ps -> ( 1 x. T ) = T ) | 
						
							| 320 | 319 | eqcomd |  |-  ( ps -> T = ( 1 x. T ) ) | 
						
							| 321 | 320 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> T = ( 1 x. T ) ) | 
						
							| 322 |  | simpr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> j < k ) | 
						
							| 323 |  | zltlem1 |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( j < k <-> j <_ ( k - 1 ) ) ) | 
						
							| 324 | 323 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( j < k <-> j <_ ( k - 1 ) ) ) | 
						
							| 325 | 322 324 | mpbid |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> j <_ ( k - 1 ) ) | 
						
							| 326 | 284 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> j e. RR ) | 
						
							| 327 |  | peano2rem |  |-  ( k e. RR -> ( k - 1 ) e. RR ) | 
						
							| 328 | 295 327 | syl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( k - 1 ) e. RR ) | 
						
							| 329 | 328 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> ( k - 1 ) e. RR ) | 
						
							| 330 |  | 1re |  |-  1 e. RR | 
						
							| 331 |  | resubcl |  |-  ( ( 1 e. RR /\ j e. RR ) -> ( 1 - j ) e. RR ) | 
						
							| 332 | 330 326 331 | sylancr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> ( 1 - j ) e. RR ) | 
						
							| 333 |  | simpr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> j <_ ( k - 1 ) ) | 
						
							| 334 | 326 329 332 333 | leadd1dd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> ( j + ( 1 - j ) ) <_ ( ( k - 1 ) + ( 1 - j ) ) ) | 
						
							| 335 |  | zcn |  |-  ( j e. ZZ -> j e. CC ) | 
						
							| 336 | 335 | adantr |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> j e. CC ) | 
						
							| 337 |  | 1cnd |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> 1 e. CC ) | 
						
							| 338 | 336 337 | pncan3d |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( j + ( 1 - j ) ) = 1 ) | 
						
							| 339 | 338 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> ( j + ( 1 - j ) ) = 1 ) | 
						
							| 340 |  | zcn |  |-  ( k e. ZZ -> k e. CC ) | 
						
							| 341 | 340 | adantl |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> k e. CC ) | 
						
							| 342 | 341 337 336 | npncand |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( k - 1 ) + ( 1 - j ) ) = ( k - j ) ) | 
						
							| 343 | 342 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> ( ( k - 1 ) + ( 1 - j ) ) = ( k - j ) ) | 
						
							| 344 | 334 339 343 | 3brtr3d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j <_ ( k - 1 ) ) -> 1 <_ ( k - j ) ) | 
						
							| 345 | 325 344 | syldan |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> 1 <_ ( k - j ) ) | 
						
							| 346 | 330 | a1i |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> 1 e. RR ) | 
						
							| 347 | 297 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( k - j ) e. RR ) | 
						
							| 348 | 1 2 | posdifd |  |-  ( ph -> ( B < C <-> 0 < ( C - B ) ) ) | 
						
							| 349 | 3 348 | mpbid |  |-  ( ph -> 0 < ( C - B ) ) | 
						
							| 350 | 349 4 | breqtrrdi |  |-  ( ph -> 0 < T ) | 
						
							| 351 | 292 350 | elrpd |  |-  ( ph -> T e. RR+ ) | 
						
							| 352 | 268 351 | syl |  |-  ( ps -> T e. RR+ ) | 
						
							| 353 | 352 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> T e. RR+ ) | 
						
							| 354 | 346 347 353 | lemul1d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( 1 <_ ( k - j ) <-> ( 1 x. T ) <_ ( ( k - j ) x. T ) ) ) | 
						
							| 355 | 345 354 | mpbid |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( 1 x. T ) <_ ( ( k - j ) x. T ) ) | 
						
							| 356 | 321 355 | eqbrtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> T <_ ( ( k - j ) x. T ) ) | 
						
							| 357 | 302 309 | resubcld |  |-  ( ps -> ( b - a ) e. RR ) | 
						
							| 358 | 301 | simp3d |  |-  ( ps -> a < b ) | 
						
							| 359 | 309 302 | posdifd |  |-  ( ps -> ( a < b <-> 0 < ( b - a ) ) ) | 
						
							| 360 | 358 359 | mpbid |  |-  ( ps -> 0 < ( b - a ) ) | 
						
							| 361 | 357 360 | elrpd |  |-  ( ps -> ( b - a ) e. RR+ ) | 
						
							| 362 | 361 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( b - a ) e. RR+ ) | 
						
							| 363 | 299 362 | ltaddrp2d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) x. T ) < ( ( b - a ) + ( ( k - j ) x. T ) ) ) | 
						
							| 364 | 302 | recnd |  |-  ( ps -> b e. CC ) | 
						
							| 365 | 364 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> b e. CC ) | 
						
							| 366 | 306 | recnd |  |-  ( ( ps /\ k e. ZZ ) -> ( k x. T ) e. CC ) | 
						
							| 367 | 366 | adantrl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( k x. T ) e. CC ) | 
						
							| 368 | 309 | recnd |  |-  ( ps -> a e. CC ) | 
						
							| 369 | 368 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> a e. CC ) | 
						
							| 370 | 313 | recnd |  |-  ( ( ps /\ j e. ZZ ) -> ( j x. T ) e. CC ) | 
						
							| 371 | 370 | adantrr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( j x. T ) e. CC ) | 
						
							| 372 | 365 367 369 371 | addsub4d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) = ( ( b - a ) + ( ( k x. T ) - ( j x. T ) ) ) ) | 
						
							| 373 | 340 | ad2antll |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> k e. CC ) | 
						
							| 374 | 335 | ad2antrl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> j e. CC ) | 
						
							| 375 | 318 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> T e. CC ) | 
						
							| 376 | 373 374 375 | subdird |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) x. T ) = ( ( k x. T ) - ( j x. T ) ) ) | 
						
							| 377 | 376 | eqcomd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k x. T ) - ( j x. T ) ) = ( ( k - j ) x. T ) ) | 
						
							| 378 | 377 | oveq2d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b - a ) + ( ( k x. T ) - ( j x. T ) ) ) = ( ( b - a ) + ( ( k - j ) x. T ) ) ) | 
						
							| 379 | 372 378 | eqtr2d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b - a ) + ( ( k - j ) x. T ) ) = ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 380 | 363 379 | breqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) x. T ) < ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 381 | 380 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( ( k - j ) x. T ) < ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 382 | 294 300 317 356 381 | lelttrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> T < ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 383 | 294 317 | ltnled |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> ( T < ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <-> -. ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) ) | 
						
							| 384 | 382 383 | mpbid |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ j < k ) -> -. ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 385 | 290 384 | syldan |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ -. k <_ j ) -> -. ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 386 | 385 | 3adantl3 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. k <_ j ) -> -. ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ T ) | 
						
							| 387 | 281 386 | condan |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> k <_ j ) | 
						
							| 388 | 190 193 | sselid |  |-  ( ph -> inf ( R , RR , < ) e. RR ) | 
						
							| 389 | 12 388 | eqeltrid |  |-  ( ph -> E e. RR ) | 
						
							| 390 | 268 389 | syl |  |-  ( ps -> E e. RR ) | 
						
							| 391 | 390 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E e. RR ) | 
						
							| 392 | 391 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E e. RR ) | 
						
							| 393 | 293 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> T e. RR ) | 
						
							| 394 | 393 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> T e. RR ) | 
						
							| 395 | 284 287 | resubcld |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( j - k ) e. RR ) | 
						
							| 396 | 395 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( j - k ) e. RR ) | 
						
							| 397 | 396 298 | remulcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( j - k ) x. T ) e. RR ) | 
						
							| 398 | 397 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( j - k ) x. T ) e. RR ) | 
						
							| 399 | 398 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( j - k ) x. T ) e. RR ) | 
						
							| 400 |  | id |  |-  ( ph -> ph ) | 
						
							| 401 | 7 8 | jca |  |-  ( ph -> ( B e. A /\ C e. A ) ) | 
						
							| 402 | 400 401 3 | 3jca |  |-  ( ph -> ( ph /\ ( B e. A /\ C e. A ) /\ B < C ) ) | 
						
							| 403 |  | eleq1 |  |-  ( d = C -> ( d e. A <-> C e. A ) ) | 
						
							| 404 | 403 | anbi2d |  |-  ( d = C -> ( ( B e. A /\ d e. A ) <-> ( B e. A /\ C e. A ) ) ) | 
						
							| 405 |  | breq2 |  |-  ( d = C -> ( B < d <-> B < C ) ) | 
						
							| 406 | 404 405 | 3anbi23d |  |-  ( d = C -> ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) <-> ( ph /\ ( B e. A /\ C e. A ) /\ B < C ) ) ) | 
						
							| 407 |  | oveq1 |  |-  ( d = C -> ( d - B ) = ( C - B ) ) | 
						
							| 408 | 407 | breq2d |  |-  ( d = C -> ( E <_ ( d - B ) <-> E <_ ( C - B ) ) ) | 
						
							| 409 | 406 408 | imbi12d |  |-  ( d = C -> ( ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> E <_ ( d - B ) ) <-> ( ( ph /\ ( B e. A /\ C e. A ) /\ B < C ) -> E <_ ( C - B ) ) ) ) | 
						
							| 410 |  | simp2l |  |-  ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> B e. A ) | 
						
							| 411 |  | eleq1 |  |-  ( c = B -> ( c e. A <-> B e. A ) ) | 
						
							| 412 | 411 | anbi1d |  |-  ( c = B -> ( ( c e. A /\ d e. A ) <-> ( B e. A /\ d e. A ) ) ) | 
						
							| 413 |  | breq1 |  |-  ( c = B -> ( c < d <-> B < d ) ) | 
						
							| 414 | 412 413 | 3anbi23d |  |-  ( c = B -> ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) <-> ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) ) ) | 
						
							| 415 |  | oveq2 |  |-  ( c = B -> ( d - c ) = ( d - B ) ) | 
						
							| 416 | 415 | breq2d |  |-  ( c = B -> ( E <_ ( d - c ) <-> E <_ ( d - B ) ) ) | 
						
							| 417 | 414 416 | imbi12d |  |-  ( c = B -> ( ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E <_ ( d - c ) ) <-> ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> E <_ ( d - B ) ) ) ) | 
						
							| 418 | 190 | a1i |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> R C_ RR ) | 
						
							| 419 |  | 0re |  |-  0 e. RR | 
						
							| 420 | 11 | eleq2i |  |-  ( y e. R <-> y e. ran ( D |` I ) ) | 
						
							| 421 | 420 | biimpi |  |-  ( y e. R -> y e. ran ( D |` I ) ) | 
						
							| 422 | 421 | adantl |  |-  ( ( ph /\ y e. R ) -> y e. ran ( D |` I ) ) | 
						
							| 423 | 67 | adantr |  |-  ( ( ph /\ y e. R ) -> ( D |` I ) Fn I ) | 
						
							| 424 |  | fvelrnb |  |-  ( ( D |` I ) Fn I -> ( y e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = y ) ) | 
						
							| 425 | 423 424 | syl |  |-  ( ( ph /\ y e. R ) -> ( y e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = y ) ) | 
						
							| 426 | 422 425 | mpbid |  |-  ( ( ph /\ y e. R ) -> E. x e. I ( ( D |` I ) ` x ) = y ) | 
						
							| 427 | 127 | rpge0d |  |-  ( ( ph /\ x e. I ) -> 0 <_ ( ( D |` I ) ` x ) ) | 
						
							| 428 | 427 | 3adant3 |  |-  ( ( ph /\ x e. I /\ ( ( D |` I ) ` x ) = y ) -> 0 <_ ( ( D |` I ) ` x ) ) | 
						
							| 429 |  | simp3 |  |-  ( ( ph /\ x e. I /\ ( ( D |` I ) ` x ) = y ) -> ( ( D |` I ) ` x ) = y ) | 
						
							| 430 | 428 429 | breqtrd |  |-  ( ( ph /\ x e. I /\ ( ( D |` I ) ` x ) = y ) -> 0 <_ y ) | 
						
							| 431 | 430 | 3exp |  |-  ( ph -> ( x e. I -> ( ( ( D |` I ) ` x ) = y -> 0 <_ y ) ) ) | 
						
							| 432 | 431 | adantr |  |-  ( ( ph /\ y e. R ) -> ( x e. I -> ( ( ( D |` I ) ` x ) = y -> 0 <_ y ) ) ) | 
						
							| 433 | 432 | rexlimdv |  |-  ( ( ph /\ y e. R ) -> ( E. x e. I ( ( D |` I ) ` x ) = y -> 0 <_ y ) ) | 
						
							| 434 | 426 433 | mpd |  |-  ( ( ph /\ y e. R ) -> 0 <_ y ) | 
						
							| 435 | 434 | ralrimiva |  |-  ( ph -> A. y e. R 0 <_ y ) | 
						
							| 436 |  | breq1 |  |-  ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) | 
						
							| 437 | 436 | ralbidv |  |-  ( x = 0 -> ( A. y e. R x <_ y <-> A. y e. R 0 <_ y ) ) | 
						
							| 438 | 437 | rspcev |  |-  ( ( 0 e. RR /\ A. y e. R 0 <_ y ) -> E. x e. RR A. y e. R x <_ y ) | 
						
							| 439 | 419 435 438 | sylancr |  |-  ( ph -> E. x e. RR A. y e. R x <_ y ) | 
						
							| 440 | 439 | 3ad2ant1 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E. x e. RR A. y e. R x <_ y ) | 
						
							| 441 |  | pm3.22 |  |-  ( ( c e. A /\ d e. A ) -> ( d e. A /\ c e. A ) ) | 
						
							| 442 |  | opelxp |  |-  ( <. d , c >. e. ( A X. A ) <-> ( d e. A /\ c e. A ) ) | 
						
							| 443 | 441 442 | sylibr |  |-  ( ( c e. A /\ d e. A ) -> <. d , c >. e. ( A X. A ) ) | 
						
							| 444 | 443 | 3ad2ant2 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> <. d , c >. e. ( A X. A ) ) | 
						
							| 445 | 5 58 | sstrd |  |-  ( ph -> A C_ RR ) | 
						
							| 446 | 445 | sselda |  |-  ( ( ph /\ c e. A ) -> c e. RR ) | 
						
							| 447 | 446 | adantrr |  |-  ( ( ph /\ ( c e. A /\ d e. A ) ) -> c e. RR ) | 
						
							| 448 | 447 | 3adant3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> c e. RR ) | 
						
							| 449 |  | simp3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> c < d ) | 
						
							| 450 | 448 449 | gtned |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> d =/= c ) | 
						
							| 451 | 450 | neneqd |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> -. d = c ) | 
						
							| 452 |  | df-br |  |-  ( d _I c <-> <. d , c >. e. _I ) | 
						
							| 453 |  | vex |  |-  c e. _V | 
						
							| 454 | 453 | ideq |  |-  ( d _I c <-> d = c ) | 
						
							| 455 | 452 454 | bitr3i |  |-  ( <. d , c >. e. _I <-> d = c ) | 
						
							| 456 | 451 455 | sylnibr |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> -. <. d , c >. e. _I ) | 
						
							| 457 | 444 456 | eldifd |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> <. d , c >. e. ( ( A X. A ) \ _I ) ) | 
						
							| 458 | 457 10 | eleqtrrdi |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> <. d , c >. e. I ) | 
						
							| 459 | 448 449 | ltned |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> c =/= d ) | 
						
							| 460 | 146 | 3ad2ant1 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( D |` I ) = ( ( abs o. - ) |` I ) ) | 
						
							| 461 | 460 | fveq1d |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ( D |` I ) ` <. d , c >. ) = ( ( ( abs o. - ) |` I ) ` <. d , c >. ) ) | 
						
							| 462 | 443 | 3ad2ant2 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> <. d , c >. e. ( A X. A ) ) | 
						
							| 463 |  | necom |  |-  ( c =/= d <-> d =/= c ) | 
						
							| 464 | 463 | biimpi |  |-  ( c =/= d -> d =/= c ) | 
						
							| 465 | 464 | neneqd |  |-  ( c =/= d -> -. d = c ) | 
						
							| 466 | 465 | 3ad2ant3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> -. d = c ) | 
						
							| 467 | 466 455 | sylnibr |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> -. <. d , c >. e. _I ) | 
						
							| 468 | 462 467 | eldifd |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> <. d , c >. e. ( ( A X. A ) \ _I ) ) | 
						
							| 469 | 468 10 | eleqtrrdi |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> <. d , c >. e. I ) | 
						
							| 470 |  | fvres |  |-  ( <. d , c >. e. I -> ( ( ( abs o. - ) |` I ) ` <. d , c >. ) = ( ( abs o. - ) ` <. d , c >. ) ) | 
						
							| 471 | 469 470 | syl |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ( ( abs o. - ) |` I ) ` <. d , c >. ) = ( ( abs o. - ) ` <. d , c >. ) ) | 
						
							| 472 |  | simp1 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ph ) | 
						
							| 473 | 472 469 | jca |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ph /\ <. d , c >. e. I ) ) | 
						
							| 474 |  | eleq1 |  |-  ( x = <. d , c >. -> ( x e. I <-> <. d , c >. e. I ) ) | 
						
							| 475 | 474 | anbi2d |  |-  ( x = <. d , c >. -> ( ( ph /\ x e. I ) <-> ( ph /\ <. d , c >. e. I ) ) ) | 
						
							| 476 |  | eleq1 |  |-  ( x = <. d , c >. -> ( x e. dom - <-> <. d , c >. e. dom - ) ) | 
						
							| 477 | 475 476 | imbi12d |  |-  ( x = <. d , c >. -> ( ( ( ph /\ x e. I ) -> x e. dom - ) <-> ( ( ph /\ <. d , c >. e. I ) -> <. d , c >. e. dom - ) ) ) | 
						
							| 478 | 477 76 | vtoclg |  |-  ( <. d , c >. e. I -> ( ( ph /\ <. d , c >. e. I ) -> <. d , c >. e. dom - ) ) | 
						
							| 479 | 469 473 478 | sylc |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> <. d , c >. e. dom - ) | 
						
							| 480 |  | fvco |  |-  ( ( Fun - /\ <. d , c >. e. dom - ) -> ( ( abs o. - ) ` <. d , c >. ) = ( abs ` ( - ` <. d , c >. ) ) ) | 
						
							| 481 | 73 479 480 | sylancr |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ( abs o. - ) ` <. d , c >. ) = ( abs ` ( - ` <. d , c >. ) ) ) | 
						
							| 482 |  | df-ov |  |-  ( d - c ) = ( - ` <. d , c >. ) | 
						
							| 483 | 482 | eqcomi |  |-  ( - ` <. d , c >. ) = ( d - c ) | 
						
							| 484 | 483 | fveq2i |  |-  ( abs ` ( - ` <. d , c >. ) ) = ( abs ` ( d - c ) ) | 
						
							| 485 | 481 484 | eqtrdi |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ( abs o. - ) ` <. d , c >. ) = ( abs ` ( d - c ) ) ) | 
						
							| 486 | 461 471 485 | 3eqtrd |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c =/= d ) -> ( ( D |` I ) ` <. d , c >. ) = ( abs ` ( d - c ) ) ) | 
						
							| 487 | 459 486 | syld3an3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( ( D |` I ) ` <. d , c >. ) = ( abs ` ( d - c ) ) ) | 
						
							| 488 | 445 | sselda |  |-  ( ( ph /\ d e. A ) -> d e. RR ) | 
						
							| 489 | 488 | adantrl |  |-  ( ( ph /\ ( c e. A /\ d e. A ) ) -> d e. RR ) | 
						
							| 490 | 489 | 3adant3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> d e. RR ) | 
						
							| 491 | 448 490 449 | ltled |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> c <_ d ) | 
						
							| 492 | 448 490 491 | abssubge0d |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( abs ` ( d - c ) ) = ( d - c ) ) | 
						
							| 493 | 487 492 | eqtrd |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( ( D |` I ) ` <. d , c >. ) = ( d - c ) ) | 
						
							| 494 |  | fveq2 |  |-  ( x = <. d , c >. -> ( ( D |` I ) ` x ) = ( ( D |` I ) ` <. d , c >. ) ) | 
						
							| 495 | 494 | eqeq1d |  |-  ( x = <. d , c >. -> ( ( ( D |` I ) ` x ) = ( d - c ) <-> ( ( D |` I ) ` <. d , c >. ) = ( d - c ) ) ) | 
						
							| 496 | 495 | rspcev |  |-  ( ( <. d , c >. e. I /\ ( ( D |` I ) ` <. d , c >. ) = ( d - c ) ) -> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) | 
						
							| 497 | 458 493 496 | syl2anc |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) | 
						
							| 498 | 489 447 | resubcld |  |-  ( ( ph /\ ( c e. A /\ d e. A ) ) -> ( d - c ) e. RR ) | 
						
							| 499 |  | elex |  |-  ( ( d - c ) e. RR -> ( d - c ) e. _V ) | 
						
							| 500 | 498 499 | syl |  |-  ( ( ph /\ ( c e. A /\ d e. A ) ) -> ( d - c ) e. _V ) | 
						
							| 501 | 500 | 3adant3 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( d - c ) e. _V ) | 
						
							| 502 |  | simp1 |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ph ) | 
						
							| 503 |  | eleq1 |  |-  ( y = ( d - c ) -> ( y e. ran ( D |` I ) <-> ( d - c ) e. ran ( D |` I ) ) ) | 
						
							| 504 |  | eqeq2 |  |-  ( y = ( d - c ) -> ( ( ( D |` I ) ` x ) = y <-> ( ( D |` I ) ` x ) = ( d - c ) ) ) | 
						
							| 505 | 504 | rexbidv |  |-  ( y = ( d - c ) -> ( E. x e. I ( ( D |` I ) ` x ) = y <-> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) ) | 
						
							| 506 | 503 505 | bibi12d |  |-  ( y = ( d - c ) -> ( ( y e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = y ) <-> ( ( d - c ) e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) ) ) | 
						
							| 507 | 506 | imbi2d |  |-  ( y = ( d - c ) -> ( ( ph -> ( y e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = y ) ) <-> ( ph -> ( ( d - c ) e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) ) ) ) | 
						
							| 508 | 67 424 | syl |  |-  ( ph -> ( y e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = y ) ) | 
						
							| 509 | 507 508 | vtoclg |  |-  ( ( d - c ) e. _V -> ( ph -> ( ( d - c ) e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) ) ) | 
						
							| 510 | 501 502 509 | sylc |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( ( d - c ) e. ran ( D |` I ) <-> E. x e. I ( ( D |` I ) ` x ) = ( d - c ) ) ) | 
						
							| 511 | 497 510 | mpbird |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( d - c ) e. ran ( D |` I ) ) | 
						
							| 512 | 511 11 | eleqtrrdi |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> ( d - c ) e. R ) | 
						
							| 513 |  | infrelb |  |-  ( ( R C_ RR /\ E. x e. RR A. y e. R x <_ y /\ ( d - c ) e. R ) -> inf ( R , RR , < ) <_ ( d - c ) ) | 
						
							| 514 | 418 440 512 513 | syl3anc |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> inf ( R , RR , < ) <_ ( d - c ) ) | 
						
							| 515 | 12 514 | eqbrtrid |  |-  ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E <_ ( d - c ) ) | 
						
							| 516 | 417 515 | vtoclg |  |-  ( B e. A -> ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> E <_ ( d - B ) ) ) | 
						
							| 517 | 410 516 | mpcom |  |-  ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> E <_ ( d - B ) ) | 
						
							| 518 | 409 517 | vtoclg |  |-  ( C e. A -> ( ( ph /\ ( B e. A /\ C e. A ) /\ B < C ) -> E <_ ( C - B ) ) ) | 
						
							| 519 | 8 402 518 | sylc |  |-  ( ph -> E <_ ( C - B ) ) | 
						
							| 520 | 519 4 | breqtrrdi |  |-  ( ph -> E <_ T ) | 
						
							| 521 | 268 520 | syl |  |-  ( ps -> E <_ T ) | 
						
							| 522 | 521 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ T ) | 
						
							| 523 | 522 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ T ) | 
						
							| 524 | 364 | adantr |  |-  ( ( ps /\ k e. ZZ ) -> b e. CC ) | 
						
							| 525 | 524 366 | pncan2d |  |-  ( ( ps /\ k e. ZZ ) -> ( ( b + ( k x. T ) ) - b ) = ( k x. T ) ) | 
						
							| 526 | 525 | oveq1d |  |-  ( ( ps /\ k e. ZZ ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) = ( ( k x. T ) / T ) ) | 
						
							| 527 | 340 | adantl |  |-  ( ( ps /\ k e. ZZ ) -> k e. CC ) | 
						
							| 528 | 318 | adantr |  |-  ( ( ps /\ k e. ZZ ) -> T e. CC ) | 
						
							| 529 | 419 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 530 | 529 350 | gtned |  |-  ( ph -> T =/= 0 ) | 
						
							| 531 | 268 530 | syl |  |-  ( ps -> T =/= 0 ) | 
						
							| 532 | 531 | adantr |  |-  ( ( ps /\ k e. ZZ ) -> T =/= 0 ) | 
						
							| 533 | 527 528 532 | divcan4d |  |-  ( ( ps /\ k e. ZZ ) -> ( ( k x. T ) / T ) = k ) | 
						
							| 534 | 526 533 | eqtr2d |  |-  ( ( ps /\ k e. ZZ ) -> k = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 535 | 534 | adantrl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> k = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 536 | 535 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> k = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 537 |  | oveq1 |  |-  ( ( a + ( j x. T ) ) = ( b + ( k x. T ) ) -> ( ( a + ( j x. T ) ) - b ) = ( ( b + ( k x. T ) ) - b ) ) | 
						
							| 538 | 537 | oveq1d |  |-  ( ( a + ( j x. T ) ) = ( b + ( k x. T ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 539 | 538 | adantl |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 540 | 368 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> a e. CC ) | 
						
							| 541 | 364 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> b e. CC ) | 
						
							| 542 | 540 370 541 | addsubd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a + ( j x. T ) ) - b ) = ( ( a - b ) + ( j x. T ) ) ) | 
						
							| 543 | 540 541 | subcld |  |-  ( ( ps /\ j e. ZZ ) -> ( a - b ) e. CC ) | 
						
							| 544 | 543 370 | addcomd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a - b ) + ( j x. T ) ) = ( ( j x. T ) + ( a - b ) ) ) | 
						
							| 545 | 542 544 | eqtrd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a + ( j x. T ) ) - b ) = ( ( j x. T ) + ( a - b ) ) ) | 
						
							| 546 | 545 | oveq1d |  |-  ( ( ps /\ j e. ZZ ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( ( ( j x. T ) + ( a - b ) ) / T ) ) | 
						
							| 547 | 318 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> T e. CC ) | 
						
							| 548 | 531 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> T =/= 0 ) | 
						
							| 549 | 370 543 547 548 | divdird |  |-  ( ( ps /\ j e. ZZ ) -> ( ( ( j x. T ) + ( a - b ) ) / T ) = ( ( ( j x. T ) / T ) + ( ( a - b ) / T ) ) ) | 
						
							| 550 | 335 | adantl |  |-  ( ( ps /\ j e. ZZ ) -> j e. CC ) | 
						
							| 551 | 550 547 548 | divcan4d |  |-  ( ( ps /\ j e. ZZ ) -> ( ( j x. T ) / T ) = j ) | 
						
							| 552 | 551 | oveq1d |  |-  ( ( ps /\ j e. ZZ ) -> ( ( ( j x. T ) / T ) + ( ( a - b ) / T ) ) = ( j + ( ( a - b ) / T ) ) ) | 
						
							| 553 | 546 549 552 | 3eqtrd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( j + ( ( a - b ) / T ) ) ) | 
						
							| 554 | 553 | adantrr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( j + ( ( a - b ) / T ) ) ) | 
						
							| 555 | 554 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) = ( j + ( ( a - b ) / T ) ) ) | 
						
							| 556 | 536 539 555 | 3eqtr2d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> k = ( j + ( ( a - b ) / T ) ) ) | 
						
							| 557 | 309 302 | resubcld |  |-  ( ps -> ( a - b ) e. RR ) | 
						
							| 558 | 309 302 | sublt0d |  |-  ( ps -> ( ( a - b ) < 0 <-> a < b ) ) | 
						
							| 559 | 358 558 | mpbird |  |-  ( ps -> ( a - b ) < 0 ) | 
						
							| 560 | 557 352 559 | divlt0gt0d |  |-  ( ps -> ( ( a - b ) / T ) < 0 ) | 
						
							| 561 | 560 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a - b ) / T ) < 0 ) | 
						
							| 562 | 335 | subidd |  |-  ( j e. ZZ -> ( j - j ) = 0 ) | 
						
							| 563 | 562 | eqcomd |  |-  ( j e. ZZ -> 0 = ( j - j ) ) | 
						
							| 564 | 563 | adantl |  |-  ( ( ps /\ j e. ZZ ) -> 0 = ( j - j ) ) | 
						
							| 565 | 561 564 | breqtrd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a - b ) / T ) < ( j - j ) ) | 
						
							| 566 | 557 293 531 | redivcld |  |-  ( ps -> ( ( a - b ) / T ) e. RR ) | 
						
							| 567 | 566 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a - b ) / T ) e. RR ) | 
						
							| 568 | 311 567 311 | ltaddsub2d |  |-  ( ( ps /\ j e. ZZ ) -> ( ( j + ( ( a - b ) / T ) ) < j <-> ( ( a - b ) / T ) < ( j - j ) ) ) | 
						
							| 569 | 565 568 | mpbird |  |-  ( ( ps /\ j e. ZZ ) -> ( j + ( ( a - b ) / T ) ) < j ) | 
						
							| 570 | 569 | adantrr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( j + ( ( a - b ) / T ) ) < j ) | 
						
							| 571 | 570 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( j + ( ( a - b ) / T ) ) < j ) | 
						
							| 572 | 556 571 | eqbrtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> k < j ) | 
						
							| 573 | 320 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> T = ( 1 x. T ) ) | 
						
							| 574 |  | simpr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> k < j ) | 
						
							| 575 |  | simplr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> k e. ZZ ) | 
						
							| 576 |  | simpll |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> j e. ZZ ) | 
						
							| 577 |  | zltp1le |  |-  ( ( k e. ZZ /\ j e. ZZ ) -> ( k < j <-> ( k + 1 ) <_ j ) ) | 
						
							| 578 | 575 576 577 | syl2anc |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> ( k < j <-> ( k + 1 ) <_ j ) ) | 
						
							| 579 | 574 578 | mpbid |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> ( k + 1 ) <_ j ) | 
						
							| 580 | 286 | ad2antlr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> k e. RR ) | 
						
							| 581 | 330 | a1i |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> 1 e. RR ) | 
						
							| 582 | 283 | ad2antrr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> j e. RR ) | 
						
							| 583 | 580 581 582 | leaddsub2d |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> ( ( k + 1 ) <_ j <-> 1 <_ ( j - k ) ) ) | 
						
							| 584 | 579 583 | mpbid |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> 1 <_ ( j - k ) ) | 
						
							| 585 | 584 | adantll |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> 1 <_ ( j - k ) ) | 
						
							| 586 | 330 | a1i |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> 1 e. RR ) | 
						
							| 587 | 395 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> ( j - k ) e. RR ) | 
						
							| 588 | 352 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> T e. RR+ ) | 
						
							| 589 | 586 587 588 | lemul1d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> ( 1 <_ ( j - k ) <-> ( 1 x. T ) <_ ( ( j - k ) x. T ) ) ) | 
						
							| 590 | 585 589 | mpbid |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> ( 1 x. T ) <_ ( ( j - k ) x. T ) ) | 
						
							| 591 | 573 590 | eqbrtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k < j ) -> T <_ ( ( j - k ) x. T ) ) | 
						
							| 592 | 572 591 | syldan |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> T <_ ( ( j - k ) x. T ) ) | 
						
							| 593 | 592 | adantlr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> T <_ ( ( j - k ) x. T ) ) | 
						
							| 594 | 593 | 3adantll3 |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> T <_ ( ( j - k ) x. T ) ) | 
						
							| 595 | 392 394 399 523 594 | letrd |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ ( ( j - k ) x. T ) ) | 
						
							| 596 |  | oveq2 |  |-  ( ( a + ( j x. T ) ) = ( b + ( k x. T ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) = ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) ) | 
						
							| 597 | 596 | oveq1d |  |-  ( ( a + ( j x. T ) ) = ( b + ( k x. T ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 598 | 597 | adantl |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 599 | 268 445 | syl |  |-  ( ps -> A C_ RR ) | 
						
							| 600 | 599 | sselda |  |-  ( ( ps /\ ( b + ( k x. T ) ) e. A ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 601 | 600 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 602 | 601 | recnd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b + ( k x. T ) ) e. CC ) | 
						
							| 603 | 602 | subidd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) = 0 ) | 
						
							| 604 | 603 | oveq1d |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) + ( ( j - k ) x. T ) ) = ( 0 + ( ( j - k ) x. T ) ) ) | 
						
							| 605 | 604 | adantr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( b + ( k x. T ) ) ) + ( ( j - k ) x. T ) ) = ( 0 + ( ( j - k ) x. T ) ) ) | 
						
							| 606 | 598 605 | eqtrd |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( 0 + ( ( j - k ) x. T ) ) ) | 
						
							| 607 | 606 | 3adantl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( 0 + ( ( j - k ) x. T ) ) ) | 
						
							| 608 | 607 | adantlr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( 0 + ( ( j - k ) x. T ) ) ) | 
						
							| 609 | 374 373 | subcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( j - k ) e. CC ) | 
						
							| 610 | 609 375 | mulcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( j - k ) x. T ) e. CC ) | 
						
							| 611 | 610 | addlidd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( 0 + ( ( j - k ) x. T ) ) = ( ( j - k ) x. T ) ) | 
						
							| 612 | 611 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( 0 + ( ( j - k ) x. T ) ) = ( ( j - k ) x. T ) ) | 
						
							| 613 | 612 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( 0 + ( ( j - k ) x. T ) ) = ( ( j - k ) x. T ) ) | 
						
							| 614 | 608 613 | eqtr2d |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( j - k ) x. T ) = ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 615 | 595 614 | breqtrd |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 616 | 615 | adantlr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 617 | 391 | ad3antrrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E e. RR ) | 
						
							| 618 | 599 | sselda |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 619 | 618 | adantrr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 620 | 601 619 | resubcld |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 621 | 620 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 622 | 621 | ad3antrrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 623 | 621 398 | readdcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) e. RR ) | 
						
							| 624 | 623 | ad3antrrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) e. RR ) | 
						
							| 625 | 268 | adantr |  |-  ( ( ps /\ k <_ j ) -> ph ) | 
						
							| 626 | 625 | 3ad2antl1 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ph ) | 
						
							| 627 | 626 | ad2antrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ph ) | 
						
							| 628 |  | simpl3 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) | 
						
							| 629 | 628 | ad2antrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) | 
						
							| 630 |  | simplr |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) | 
						
							| 631 | 619 | ad2antrr |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 632 | 601 | ad2antrr |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 633 | 631 632 | lenltd |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) <-> -. ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) ) | 
						
							| 634 | 630 633 | mpbid |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) | 
						
							| 635 |  | eqcom |  |-  ( ( a + ( j x. T ) ) = ( b + ( k x. T ) ) <-> ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) | 
						
							| 636 | 635 | notbii |  |-  ( -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) <-> -. ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) | 
						
							| 637 | 636 | biimpi |  |-  ( -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) -> -. ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) | 
						
							| 638 | 637 | adantl |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) | 
						
							| 639 |  | ioran |  |-  ( -. ( ( b + ( k x. T ) ) < ( a + ( j x. T ) ) \/ ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) <-> ( -. ( b + ( k x. T ) ) < ( a + ( j x. T ) ) /\ -. ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) ) | 
						
							| 640 | 634 638 639 | sylanbrc |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( ( b + ( k x. T ) ) < ( a + ( j x. T ) ) \/ ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) ) | 
						
							| 641 | 632 631 | leloed |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( b + ( k x. T ) ) <_ ( a + ( j x. T ) ) <-> ( ( b + ( k x. T ) ) < ( a + ( j x. T ) ) \/ ( b + ( k x. T ) ) = ( a + ( j x. T ) ) ) ) ) | 
						
							| 642 | 640 641 | mtbird |  |-  ( ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( b + ( k x. T ) ) <_ ( a + ( j x. T ) ) ) | 
						
							| 643 | 642 | 3adantll2 |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( b + ( k x. T ) ) <_ ( a + ( j x. T ) ) ) | 
						
							| 644 | 643 | adantllr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> -. ( b + ( k x. T ) ) <_ ( a + ( j x. T ) ) ) | 
						
							| 645 | 619 | adantr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 646 | 645 | 3adantl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 647 | 646 | ad2antrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 648 | 601 | adantr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 649 | 648 | 3adantl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 650 | 649 | ad2antrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 651 | 647 650 | ltnled |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( a + ( j x. T ) ) < ( b + ( k x. T ) ) <-> -. ( b + ( k x. T ) ) <_ ( a + ( j x. T ) ) ) ) | 
						
							| 652 | 644 651 | mpbird |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) | 
						
							| 653 |  | simp2l |  |-  ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) e. A ) | 
						
							| 654 |  | eleq1 |  |-  ( c = ( a + ( j x. T ) ) -> ( c e. A <-> ( a + ( j x. T ) ) e. A ) ) | 
						
							| 655 | 654 | anbi1d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( c e. A /\ ( b + ( k x. T ) ) e. A ) <-> ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 656 |  | breq1 |  |-  ( c = ( a + ( j x. T ) ) -> ( c < ( b + ( k x. T ) ) <-> ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) ) | 
						
							| 657 | 655 656 | 3anbi23d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) <-> ( ph /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) ) ) | 
						
							| 658 |  | oveq2 |  |-  ( c = ( a + ( j x. T ) ) -> ( ( b + ( k x. T ) ) - c ) = ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 659 | 658 | breq2d |  |-  ( c = ( a + ( j x. T ) ) -> ( E <_ ( ( b + ( k x. T ) ) - c ) <-> E <_ ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) ) | 
						
							| 660 | 657 659 | imbi12d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - c ) ) <-> ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) ) ) | 
						
							| 661 |  | simp2r |  |-  ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) e. A ) | 
						
							| 662 |  | eleq1 |  |-  ( d = ( b + ( k x. T ) ) -> ( d e. A <-> ( b + ( k x. T ) ) e. A ) ) | 
						
							| 663 | 662 | anbi2d |  |-  ( d = ( b + ( k x. T ) ) -> ( ( c e. A /\ d e. A ) <-> ( c e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 664 |  | breq2 |  |-  ( d = ( b + ( k x. T ) ) -> ( c < d <-> c < ( b + ( k x. T ) ) ) ) | 
						
							| 665 | 663 664 | 3anbi23d |  |-  ( d = ( b + ( k x. T ) ) -> ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) <-> ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) ) ) | 
						
							| 666 |  | oveq1 |  |-  ( d = ( b + ( k x. T ) ) -> ( d - c ) = ( ( b + ( k x. T ) ) - c ) ) | 
						
							| 667 | 666 | breq2d |  |-  ( d = ( b + ( k x. T ) ) -> ( E <_ ( d - c ) <-> E <_ ( ( b + ( k x. T ) ) - c ) ) ) | 
						
							| 668 | 665 667 | imbi12d |  |-  ( d = ( b + ( k x. T ) ) -> ( ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E <_ ( d - c ) ) <-> ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - c ) ) ) ) | 
						
							| 669 | 668 515 | vtoclg |  |-  ( ( b + ( k x. T ) ) e. A -> ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - c ) ) ) | 
						
							| 670 | 661 669 | mpcom |  |-  ( ( ph /\ ( c e. A /\ ( b + ( k x. T ) ) e. A ) /\ c < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - c ) ) | 
						
							| 671 | 660 670 | vtoclg |  |-  ( ( a + ( j x. T ) ) e. A -> ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) ) | 
						
							| 672 | 653 671 | mpcom |  |-  ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 673 | 627 629 652 672 | syl3anc |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 674 | 395 | ad2antlr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) -> ( j - k ) e. RR ) | 
						
							| 675 | 293 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) -> T e. RR ) | 
						
							| 676 |  | simpr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k <_ j ) -> k <_ j ) | 
						
							| 677 | 283 | ad2antrr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k <_ j ) -> j e. RR ) | 
						
							| 678 | 286 | ad2antlr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k <_ j ) -> k e. RR ) | 
						
							| 679 | 677 678 | subge0d |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k <_ j ) -> ( 0 <_ ( j - k ) <-> k <_ j ) ) | 
						
							| 680 | 676 679 | mpbird |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k <_ j ) -> 0 <_ ( j - k ) ) | 
						
							| 681 | 680 | adantll |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) -> 0 <_ ( j - k ) ) | 
						
							| 682 | 352 | rpge0d |  |-  ( ps -> 0 <_ T ) | 
						
							| 683 | 682 | ad2antrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) -> 0 <_ T ) | 
						
							| 684 | 674 675 681 683 | mulge0d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k <_ j ) -> 0 <_ ( ( j - k ) x. T ) ) | 
						
							| 685 | 684 | 3adantl3 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> 0 <_ ( ( j - k ) x. T ) ) | 
						
							| 686 | 621 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 687 | 398 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( ( j - k ) x. T ) e. RR ) | 
						
							| 688 | 686 687 | addge01d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( 0 <_ ( ( j - k ) x. T ) <-> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) ) | 
						
							| 689 | 685 688 | mpbid |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 690 | 689 | ad2antrr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 691 | 617 622 624 673 690 | letrd |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) /\ -. ( a + ( j x. T ) ) = ( b + ( k x. T ) ) ) -> E <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 692 | 616 691 | pm2.61dan |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> E <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 693 | 372 378 | eqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) = ( ( b - a ) + ( ( k - j ) x. T ) ) ) | 
						
							| 694 | 693 | oveq1d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( ( ( b - a ) + ( ( k - j ) x. T ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 695 | 365 369 | subcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( b - a ) e. CC ) | 
						
							| 696 | 373 374 | subcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( k - j ) e. CC ) | 
						
							| 697 | 696 375 | mulcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) x. T ) e. CC ) | 
						
							| 698 | 695 697 610 | addassd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( b - a ) + ( ( k - j ) x. T ) ) + ( ( j - k ) x. T ) ) = ( ( b - a ) + ( ( ( k - j ) x. T ) + ( ( j - k ) x. T ) ) ) ) | 
						
							| 699 | 341 336 336 341 | subadd4b |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( k - j ) + ( j - k ) ) = ( ( k - k ) + ( j - j ) ) ) | 
						
							| 700 | 699 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( k - j ) + ( j - k ) ) = ( ( k - k ) + ( j - j ) ) ) | 
						
							| 701 | 700 | oveq1d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( k - j ) + ( j - k ) ) x. T ) = ( ( ( k - k ) + ( j - j ) ) x. T ) ) | 
						
							| 702 | 696 609 375 | adddird |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( k - j ) + ( j - k ) ) x. T ) = ( ( ( k - j ) x. T ) + ( ( j - k ) x. T ) ) ) | 
						
							| 703 | 340 | subidd |  |-  ( k e. ZZ -> ( k - k ) = 0 ) | 
						
							| 704 | 703 | adantl |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( k - k ) = 0 ) | 
						
							| 705 | 562 | adantr |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( j - j ) = 0 ) | 
						
							| 706 | 704 705 | oveq12d |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( k - k ) + ( j - j ) ) = ( 0 + 0 ) ) | 
						
							| 707 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 708 | 706 707 | eqtrdi |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( k - k ) + ( j - j ) ) = 0 ) | 
						
							| 709 | 708 | oveq1d |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( ( k - k ) + ( j - j ) ) x. T ) = ( 0 x. T ) ) | 
						
							| 710 | 709 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( k - k ) + ( j - j ) ) x. T ) = ( 0 x. T ) ) | 
						
							| 711 | 701 702 710 | 3eqtr3d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( k - j ) x. T ) + ( ( j - k ) x. T ) ) = ( 0 x. T ) ) | 
						
							| 712 | 711 | oveq2d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b - a ) + ( ( ( k - j ) x. T ) + ( ( j - k ) x. T ) ) ) = ( ( b - a ) + ( 0 x. T ) ) ) | 
						
							| 713 | 318 | mul02d |  |-  ( ps -> ( 0 x. T ) = 0 ) | 
						
							| 714 | 713 | oveq2d |  |-  ( ps -> ( ( b - a ) + ( 0 x. T ) ) = ( ( b - a ) + 0 ) ) | 
						
							| 715 | 364 368 | subcld |  |-  ( ps -> ( b - a ) e. CC ) | 
						
							| 716 | 715 | addridd |  |-  ( ps -> ( ( b - a ) + 0 ) = ( b - a ) ) | 
						
							| 717 | 714 716 | eqtrd |  |-  ( ps -> ( ( b - a ) + ( 0 x. T ) ) = ( b - a ) ) | 
						
							| 718 | 717 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b - a ) + ( 0 x. T ) ) = ( b - a ) ) | 
						
							| 719 | 712 718 | eqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( b - a ) + ( ( ( k - j ) x. T ) + ( ( j - k ) x. T ) ) ) = ( b - a ) ) | 
						
							| 720 | 694 698 719 | 3eqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( b - a ) ) | 
						
							| 721 | 720 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( b - a ) ) | 
						
							| 722 | 721 | ad2antrr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( b - a ) ) | 
						
							| 723 | 692 722 | breqtrd |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> E <_ ( b - a ) ) | 
						
							| 724 |  | simpll |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 725 |  | simpr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) | 
						
							| 726 | 601 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 727 | 726 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 728 | 619 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 729 | 728 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 730 | 727 729 | ltnled |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( ( b + ( k x. T ) ) < ( a + ( j x. T ) ) <-> -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) ) | 
						
							| 731 | 725 730 | mpbird |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) | 
						
							| 732 | 731 | adantlr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) | 
						
							| 733 | 535 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> k = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 734 | 733 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> k = ( ( ( b + ( k x. T ) ) - b ) / T ) ) | 
						
							| 735 | 600 | 3adant2 |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 736 | 302 | 3ad2ant1 |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> b e. RR ) | 
						
							| 737 | 735 736 | resubcld |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> ( ( b + ( k x. T ) ) - b ) e. RR ) | 
						
							| 738 | 293 | 3ad2ant1 |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> T e. RR ) | 
						
							| 739 | 531 | 3ad2ant1 |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> T =/= 0 ) | 
						
							| 740 | 737 738 739 | redivcld |  |-  ( ( ps /\ k e. ZZ /\ ( b + ( k x. T ) ) e. A ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) e. RR ) | 
						
							| 741 | 740 | 3adant3l |  |-  ( ( ps /\ k e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) e. RR ) | 
						
							| 742 | 741 | 3adant2l |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) e. RR ) | 
						
							| 743 | 742 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) e. RR ) | 
						
							| 744 | 618 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 745 | 302 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> b e. RR ) | 
						
							| 746 | 744 745 | resubcld |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> ( ( a + ( j x. T ) ) - b ) e. RR ) | 
						
							| 747 | 293 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> T e. RR ) | 
						
							| 748 | 531 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> T =/= 0 ) | 
						
							| 749 | 746 747 748 | redivcld |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) e. RR ) | 
						
							| 750 | 749 | 3adant3r |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) e. RR ) | 
						
							| 751 | 750 | 3adant2r |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) e. RR ) | 
						
							| 752 | 751 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) e. RR ) | 
						
							| 753 | 284 | 3ad2ant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> j e. RR ) | 
						
							| 754 | 753 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> j e. RR ) | 
						
							| 755 | 726 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 756 | 302 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> b e. RR ) | 
						
							| 757 | 756 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> b e. RR ) | 
						
							| 758 | 755 757 | resubcld |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( b + ( k x. T ) ) - b ) e. RR ) | 
						
							| 759 | 728 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 760 | 759 757 | resubcld |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( a + ( j x. T ) ) - b ) e. RR ) | 
						
							| 761 | 352 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> T e. RR+ ) | 
						
							| 762 | 761 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> T e. RR+ ) | 
						
							| 763 | 601 | adantr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( b + ( k x. T ) ) e. RR ) | 
						
							| 764 | 619 | adantr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 765 | 302 | ad2antrr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> b e. RR ) | 
						
							| 766 |  | simpr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) | 
						
							| 767 | 763 764 765 766 | ltsub1dd |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( b + ( k x. T ) ) - b ) < ( ( a + ( j x. T ) ) - b ) ) | 
						
							| 768 | 767 | 3adantl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( b + ( k x. T ) ) - b ) < ( ( a + ( j x. T ) ) - b ) ) | 
						
							| 769 | 758 760 762 768 | ltdiv1dd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) < ( ( ( a + ( j x. T ) ) - b ) / T ) ) | 
						
							| 770 | 554 570 | eqbrtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) < j ) | 
						
							| 771 | 770 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) < j ) | 
						
							| 772 | 771 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( ( a + ( j x. T ) ) - b ) / T ) < j ) | 
						
							| 773 | 743 752 754 769 772 | lttrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> ( ( ( b + ( k x. T ) ) - b ) / T ) < j ) | 
						
							| 774 | 734 773 | eqbrtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> k < j ) | 
						
							| 775 | 774 | adantlr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> k < j ) | 
						
							| 776 | 732 775 | syldan |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> k < j ) | 
						
							| 777 | 391 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> E e. RR ) | 
						
							| 778 | 393 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> T e. RR ) | 
						
							| 779 | 623 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) e. RR ) | 
						
							| 780 | 522 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> E <_ T ) | 
						
							| 781 |  | peano2rem |  |-  ( j e. RR -> ( j - 1 ) e. RR ) | 
						
							| 782 | 753 781 | syl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( j - 1 ) e. RR ) | 
						
							| 783 | 287 | 3ad2ant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> k e. RR ) | 
						
							| 784 | 782 783 | resubcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( j - 1 ) - k ) e. RR ) | 
						
							| 785 | 784 393 | remulcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - 1 ) - k ) x. T ) e. RR ) | 
						
							| 786 | 785 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( ( ( j - 1 ) - k ) x. T ) e. RR ) | 
						
							| 787 | 753 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> j e. RR ) | 
						
							| 788 | 330 | a1i |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> 1 e. RR ) | 
						
							| 789 | 787 788 | resubcld |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( j - 1 ) e. RR ) | 
						
							| 790 | 286 | ad2antlr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> k e. RR ) | 
						
							| 791 | 790 | 3ad2antl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> k e. RR ) | 
						
							| 792 | 789 791 | resubcld |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( ( j - 1 ) - k ) e. RR ) | 
						
							| 793 | 682 | adantr |  |-  ( ( ps /\ k < ( j - 1 ) ) -> 0 <_ T ) | 
						
							| 794 | 793 | 3ad2antl1 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> 0 <_ T ) | 
						
							| 795 | 283 | ad2antrr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> j e. RR ) | 
						
							| 796 | 330 | a1i |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> 1 e. RR ) | 
						
							| 797 | 795 796 | resubcld |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> ( j - 1 ) e. RR ) | 
						
							| 798 |  | simpr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> k < ( j - 1 ) ) | 
						
							| 799 |  | simplr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> k e. ZZ ) | 
						
							| 800 |  | simpll |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> j e. ZZ ) | 
						
							| 801 |  | 1zzd |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> 1 e. ZZ ) | 
						
							| 802 | 800 801 | zsubcld |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> ( j - 1 ) e. ZZ ) | 
						
							| 803 |  | zltlem1 |  |-  ( ( k e. ZZ /\ ( j - 1 ) e. ZZ ) -> ( k < ( j - 1 ) <-> k <_ ( ( j - 1 ) - 1 ) ) ) | 
						
							| 804 | 799 802 803 | syl2anc |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> ( k < ( j - 1 ) <-> k <_ ( ( j - 1 ) - 1 ) ) ) | 
						
							| 805 | 798 804 | mpbid |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> k <_ ( ( j - 1 ) - 1 ) ) | 
						
							| 806 | 790 797 796 805 | lesubd |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < ( j - 1 ) ) -> 1 <_ ( ( j - 1 ) - k ) ) | 
						
							| 807 | 806 | 3ad2antl2 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> 1 <_ ( ( j - 1 ) - k ) ) | 
						
							| 808 | 778 792 794 807 | lemulge12d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> T <_ ( ( ( j - 1 ) - k ) x. T ) ) | 
						
							| 809 | 336 337 341 | sub32d |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( j - 1 ) - k ) = ( ( j - k ) - 1 ) ) | 
						
							| 810 | 809 | oveq1d |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( ( ( j - 1 ) - k ) x. T ) = ( ( ( j - k ) - 1 ) x. T ) ) | 
						
							| 811 | 810 | adantl |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( j - 1 ) - k ) x. T ) = ( ( ( j - k ) - 1 ) x. T ) ) | 
						
							| 812 |  | 1cnd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> 1 e. CC ) | 
						
							| 813 | 609 812 375 | subdird |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( j - k ) - 1 ) x. T ) = ( ( ( j - k ) x. T ) - ( 1 x. T ) ) ) | 
						
							| 814 | 319 | oveq2d |  |-  ( ps -> ( ( ( j - k ) x. T ) - ( 1 x. T ) ) = ( ( ( j - k ) x. T ) - T ) ) | 
						
							| 815 | 814 | adantr |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( j - k ) x. T ) - ( 1 x. T ) ) = ( ( ( j - k ) x. T ) - T ) ) | 
						
							| 816 | 811 813 815 | 3eqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( ( ( j - 1 ) - k ) x. T ) = ( ( ( j - k ) x. T ) - T ) ) | 
						
							| 817 | 816 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - 1 ) - k ) x. T ) = ( ( ( j - k ) x. T ) - T ) ) | 
						
							| 818 | 728 726 | resubcld |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) e. RR ) | 
						
							| 819 | 270 272 277 275 | iccsuble |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) <_ ( C - B ) ) | 
						
							| 820 | 819 4 | breqtrrdi |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) <_ T ) | 
						
							| 821 | 820 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) <_ T ) | 
						
							| 822 | 818 393 398 821 | lesub2dd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - k ) x. T ) - T ) <_ ( ( ( j - k ) x. T ) - ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) ) ) | 
						
							| 823 | 817 822 | eqbrtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - 1 ) - k ) x. T ) <_ ( ( ( j - k ) x. T ) - ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) ) ) | 
						
							| 824 | 610 | 3adant3 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( j - k ) x. T ) e. CC ) | 
						
							| 825 | 728 | recnd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. CC ) | 
						
							| 826 | 602 | 3adant2 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b + ( k x. T ) ) e. CC ) | 
						
							| 827 | 824 825 826 | subsub2d |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - k ) x. T ) - ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) ) = ( ( ( j - k ) x. T ) + ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) ) | 
						
							| 828 | 621 | recnd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) e. CC ) | 
						
							| 829 | 824 828 | addcomd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - k ) x. T ) + ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) ) = ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 830 | 827 829 | eqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - k ) x. T ) - ( ( a + ( j x. T ) ) - ( b + ( k x. T ) ) ) ) = ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 831 | 823 830 | breqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( ( ( j - 1 ) - k ) x. T ) <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 832 | 831 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( ( ( j - 1 ) - k ) x. T ) <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 833 | 778 786 779 808 832 | letrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> T <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 834 | 777 778 779 780 833 | letrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> E <_ ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 835 | 721 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( b - a ) ) | 
						
							| 836 | 834 835 | breqtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < ( j - 1 ) ) -> E <_ ( b - a ) ) | 
						
							| 837 | 836 | adantlr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ k < ( j - 1 ) ) -> E <_ ( b - a ) ) | 
						
							| 838 | 837 | adantlr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) /\ k < ( j - 1 ) ) -> E <_ ( b - a ) ) | 
						
							| 839 |  | simplll |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) /\ -. k < ( j - 1 ) ) -> ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 840 |  | simpll2 |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ -. k < ( j - 1 ) ) -> ( j e. ZZ /\ k e. ZZ ) ) | 
						
							| 841 |  | simplr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ -. k < ( j - 1 ) ) -> k < j ) | 
						
							| 842 |  | simpr |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ -. k < ( j - 1 ) ) -> -. k < ( j - 1 ) ) | 
						
							| 843 | 581 582 580 584 | lesubd |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j ) -> k <_ ( j - 1 ) ) | 
						
							| 844 | 843 | 3adant3 |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> k <_ ( j - 1 ) ) | 
						
							| 845 |  | simpr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ -. k < ( j - 1 ) ) -> -. k < ( j - 1 ) ) | 
						
							| 846 | 284 781 | syl |  |-  ( ( j e. ZZ /\ k e. ZZ ) -> ( j - 1 ) e. RR ) | 
						
							| 847 | 846 | adantr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ -. k < ( j - 1 ) ) -> ( j - 1 ) e. RR ) | 
						
							| 848 | 286 | ad2antlr |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ -. k < ( j - 1 ) ) -> k e. RR ) | 
						
							| 849 | 847 848 | lenltd |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ -. k < ( j - 1 ) ) -> ( ( j - 1 ) <_ k <-> -. k < ( j - 1 ) ) ) | 
						
							| 850 | 845 849 | mpbird |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ -. k < ( j - 1 ) ) -> ( j - 1 ) <_ k ) | 
						
							| 851 | 850 | 3adant2 |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> ( j - 1 ) <_ k ) | 
						
							| 852 | 580 | 3adant3 |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> k e. RR ) | 
						
							| 853 | 846 | 3ad2ant1 |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> ( j - 1 ) e. RR ) | 
						
							| 854 | 852 853 | letri3d |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> ( k = ( j - 1 ) <-> ( k <_ ( j - 1 ) /\ ( j - 1 ) <_ k ) ) ) | 
						
							| 855 | 844 851 854 | mpbir2and |  |-  ( ( ( j e. ZZ /\ k e. ZZ ) /\ k < j /\ -. k < ( j - 1 ) ) -> k = ( j - 1 ) ) | 
						
							| 856 | 840 841 842 855 | syl3anc |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ -. k < ( j - 1 ) ) -> k = ( j - 1 ) ) | 
						
							| 857 | 856 | adantlr |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) /\ -. k < ( j - 1 ) ) -> k = ( j - 1 ) ) | 
						
							| 858 |  | simpl1 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> ps ) | 
						
							| 859 |  | simpl2l |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> j e. ZZ ) | 
						
							| 860 |  | simpl3l |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> ( a + ( j x. T ) ) e. A ) | 
						
							| 861 |  | oveq1 |  |-  ( k = ( j - 1 ) -> ( k x. T ) = ( ( j - 1 ) x. T ) ) | 
						
							| 862 | 861 | oveq2d |  |-  ( k = ( j - 1 ) -> ( b + ( k x. T ) ) = ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 863 | 862 | eqcomd |  |-  ( k = ( j - 1 ) -> ( b + ( ( j - 1 ) x. T ) ) = ( b + ( k x. T ) ) ) | 
						
							| 864 | 863 | adantl |  |-  ( ( ( b + ( k x. T ) ) e. A /\ k = ( j - 1 ) ) -> ( b + ( ( j - 1 ) x. T ) ) = ( b + ( k x. T ) ) ) | 
						
							| 865 |  | simpl |  |-  ( ( ( b + ( k x. T ) ) e. A /\ k = ( j - 1 ) ) -> ( b + ( k x. T ) ) e. A ) | 
						
							| 866 | 864 865 | eqeltrd |  |-  ( ( ( b + ( k x. T ) ) e. A /\ k = ( j - 1 ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 867 | 866 | adantll |  |-  ( ( ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) /\ k = ( j - 1 ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 868 | 867 | 3ad2antl3 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 869 | 860 868 | jca |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) | 
						
							| 870 |  | id |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) ) | 
						
							| 871 | 870 | 3adant3r |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) ) | 
						
							| 872 | 744 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 873 | 271 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> C e. RR ) | 
						
							| 874 | 873 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> C e. RR ) | 
						
							| 875 | 269 | adantr |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> B e. RR ) | 
						
							| 876 | 271 | adantr |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> C e. RR ) | 
						
							| 877 |  | elicc2 |  |-  ( ( B e. RR /\ C e. RR ) -> ( ( a + ( j x. T ) ) e. ( B [,] C ) <-> ( ( a + ( j x. T ) ) e. RR /\ B <_ ( a + ( j x. T ) ) /\ ( a + ( j x. T ) ) <_ C ) ) ) | 
						
							| 878 | 875 876 877 | syl2anc |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> ( ( a + ( j x. T ) ) e. ( B [,] C ) <-> ( ( a + ( j x. T ) ) e. RR /\ B <_ ( a + ( j x. T ) ) /\ ( a + ( j x. T ) ) <_ C ) ) ) | 
						
							| 879 | 276 878 | mpbid |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> ( ( a + ( j x. T ) ) e. RR /\ B <_ ( a + ( j x. T ) ) /\ ( a + ( j x. T ) ) <_ C ) ) | 
						
							| 880 | 879 | simp3d |  |-  ( ( ps /\ ( a + ( j x. T ) ) e. A ) -> ( a + ( j x. T ) ) <_ C ) | 
						
							| 881 | 880 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> ( a + ( j x. T ) ) <_ C ) | 
						
							| 882 | 881 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( a + ( j x. T ) ) <_ C ) | 
						
							| 883 |  | nne |  |-  ( -. C =/= ( a + ( j x. T ) ) <-> C = ( a + ( j x. T ) ) ) | 
						
							| 884 | 540 370 | pncand |  |-  ( ( ps /\ j e. ZZ ) -> ( ( a + ( j x. T ) ) - ( j x. T ) ) = a ) | 
						
							| 885 | 884 | eqcomd |  |-  ( ( ps /\ j e. ZZ ) -> a = ( ( a + ( j x. T ) ) - ( j x. T ) ) ) | 
						
							| 886 | 885 | adantr |  |-  ( ( ( ps /\ j e. ZZ ) /\ C = ( a + ( j x. T ) ) ) -> a = ( ( a + ( j x. T ) ) - ( j x. T ) ) ) | 
						
							| 887 |  | oveq1 |  |-  ( C = ( a + ( j x. T ) ) -> ( C - ( j x. T ) ) = ( ( a + ( j x. T ) ) - ( j x. T ) ) ) | 
						
							| 888 | 887 | eqcomd |  |-  ( C = ( a + ( j x. T ) ) -> ( ( a + ( j x. T ) ) - ( j x. T ) ) = ( C - ( j x. T ) ) ) | 
						
							| 889 | 888 | adantl |  |-  ( ( ( ps /\ j e. ZZ ) /\ C = ( a + ( j x. T ) ) ) -> ( ( a + ( j x. T ) ) - ( j x. T ) ) = ( C - ( j x. T ) ) ) | 
						
							| 890 | 4 | oveq2i |  |-  ( B + T ) = ( B + ( C - B ) ) | 
						
							| 891 | 268 161 | syl |  |-  ( ps -> B e. CC ) | 
						
							| 892 | 268 162 | syl |  |-  ( ps -> C e. CC ) | 
						
							| 893 | 891 892 | pncan3d |  |-  ( ps -> ( B + ( C - B ) ) = C ) | 
						
							| 894 | 890 893 | eqtr2id |  |-  ( ps -> C = ( B + T ) ) | 
						
							| 895 | 894 | oveq1d |  |-  ( ps -> ( C - ( j x. T ) ) = ( ( B + T ) - ( j x. T ) ) ) | 
						
							| 896 | 895 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> ( C - ( j x. T ) ) = ( ( B + T ) - ( j x. T ) ) ) | 
						
							| 897 | 891 | adantr |  |-  ( ( ps /\ j e. ZZ ) -> B e. CC ) | 
						
							| 898 | 897 370 547 | subsub3d |  |-  ( ( ps /\ j e. ZZ ) -> ( B - ( ( j x. T ) - T ) ) = ( ( B + T ) - ( j x. T ) ) ) | 
						
							| 899 | 550 547 | mulsubfacd |  |-  ( ( ps /\ j e. ZZ ) -> ( ( j x. T ) - T ) = ( ( j - 1 ) x. T ) ) | 
						
							| 900 | 899 | oveq2d |  |-  ( ( ps /\ j e. ZZ ) -> ( B - ( ( j x. T ) - T ) ) = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 901 | 896 898 900 | 3eqtr2d |  |-  ( ( ps /\ j e. ZZ ) -> ( C - ( j x. T ) ) = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 902 | 901 | adantr |  |-  ( ( ( ps /\ j e. ZZ ) /\ C = ( a + ( j x. T ) ) ) -> ( C - ( j x. T ) ) = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 903 | 886 889 902 | 3eqtrd |  |-  ( ( ( ps /\ j e. ZZ ) /\ C = ( a + ( j x. T ) ) ) -> a = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 904 | 903 | 3adantl3 |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ C = ( a + ( j x. T ) ) ) -> a = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 905 | 904 | adantlr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ C = ( a + ( j x. T ) ) ) -> a = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 906 |  | oveq1 |  |-  ( ( b + ( ( j - 1 ) x. T ) ) = B -> ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) = ( B - ( ( j - 1 ) x. T ) ) ) | 
						
							| 907 | 906 | eqcomd |  |-  ( ( b + ( ( j - 1 ) x. T ) ) = B -> ( B - ( ( j - 1 ) x. T ) ) = ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) ) | 
						
							| 908 | 907 | ad2antlr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ C = ( a + ( j x. T ) ) ) -> ( B - ( ( j - 1 ) x. T ) ) = ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) ) | 
						
							| 909 | 364 | ad2antrr |  |-  ( ( ( ps /\ j e. ZZ ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> b e. CC ) | 
						
							| 910 |  | 1cnd |  |-  ( ( ps /\ j e. ZZ ) -> 1 e. CC ) | 
						
							| 911 | 550 910 | subcld |  |-  ( ( ps /\ j e. ZZ ) -> ( j - 1 ) e. CC ) | 
						
							| 912 | 911 547 | mulcld |  |-  ( ( ps /\ j e. ZZ ) -> ( ( j - 1 ) x. T ) e. CC ) | 
						
							| 913 | 912 | adantr |  |-  ( ( ( ps /\ j e. ZZ ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( j - 1 ) x. T ) e. CC ) | 
						
							| 914 | 909 913 | pncand |  |-  ( ( ( ps /\ j e. ZZ ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) = b ) | 
						
							| 915 | 914 | 3adantl3 |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) = b ) | 
						
							| 916 | 915 | adantr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ C = ( a + ( j x. T ) ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - ( ( j - 1 ) x. T ) ) = b ) | 
						
							| 917 | 905 908 916 | 3eqtrd |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ C = ( a + ( j x. T ) ) ) -> a = b ) | 
						
							| 918 | 883 917 | sylan2b |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ -. C =/= ( a + ( j x. T ) ) ) -> a = b ) | 
						
							| 919 | 309 358 | ltned |  |-  ( ps -> a =/= b ) | 
						
							| 920 | 919 | neneqd |  |-  ( ps -> -. a = b ) | 
						
							| 921 | 920 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) -> -. a = b ) | 
						
							| 922 | 921 | ad2antrr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ -. C =/= ( a + ( j x. T ) ) ) -> -. a = b ) | 
						
							| 923 | 918 922 | condan |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> C =/= ( a + ( j x. T ) ) ) | 
						
							| 924 | 872 874 882 923 | leneltd |  |-  ( ( ( ps /\ j e. ZZ /\ ( a + ( j x. T ) ) e. A ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( a + ( j x. T ) ) < C ) | 
						
							| 925 | 871 924 | sylan |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( a + ( j x. T ) ) < C ) | 
						
							| 926 | 268 | ad2antrr |  |-  ( ( ( ps /\ ( a + ( j x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < C ) -> ph ) | 
						
							| 927 |  | simplr |  |-  ( ( ( ps /\ ( a + ( j x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < C ) -> ( a + ( j x. T ) ) e. A ) | 
						
							| 928 | 926 8 | syl |  |-  ( ( ( ps /\ ( a + ( j x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < C ) -> C e. A ) | 
						
							| 929 |  | simpr |  |-  ( ( ( ps /\ ( a + ( j x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < C ) -> ( a + ( j x. T ) ) < C ) | 
						
							| 930 |  | simp2l |  |-  ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ C e. A ) /\ ( a + ( j x. T ) ) < C ) -> ( a + ( j x. T ) ) e. A ) | 
						
							| 931 | 654 | anbi1d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( c e. A /\ C e. A ) <-> ( ( a + ( j x. T ) ) e. A /\ C e. A ) ) ) | 
						
							| 932 |  | breq1 |  |-  ( c = ( a + ( j x. T ) ) -> ( c < C <-> ( a + ( j x. T ) ) < C ) ) | 
						
							| 933 | 931 932 | 3anbi23d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) <-> ( ph /\ ( ( a + ( j x. T ) ) e. A /\ C e. A ) /\ ( a + ( j x. T ) ) < C ) ) ) | 
						
							| 934 |  | oveq2 |  |-  ( c = ( a + ( j x. T ) ) -> ( C - c ) = ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 935 | 934 | breq2d |  |-  ( c = ( a + ( j x. T ) ) -> ( E <_ ( C - c ) <-> E <_ ( C - ( a + ( j x. T ) ) ) ) ) | 
						
							| 936 | 933 935 | imbi12d |  |-  ( c = ( a + ( j x. T ) ) -> ( ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) -> E <_ ( C - c ) ) <-> ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ C e. A ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) ) ) | 
						
							| 937 |  | simp2r |  |-  ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) -> C e. A ) | 
						
							| 938 | 403 | anbi2d |  |-  ( d = C -> ( ( c e. A /\ d e. A ) <-> ( c e. A /\ C e. A ) ) ) | 
						
							| 939 |  | breq2 |  |-  ( d = C -> ( c < d <-> c < C ) ) | 
						
							| 940 | 938 939 | 3anbi23d |  |-  ( d = C -> ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) <-> ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) ) ) | 
						
							| 941 |  | oveq1 |  |-  ( d = C -> ( d - c ) = ( C - c ) ) | 
						
							| 942 | 941 | breq2d |  |-  ( d = C -> ( E <_ ( d - c ) <-> E <_ ( C - c ) ) ) | 
						
							| 943 | 940 942 | imbi12d |  |-  ( d = C -> ( ( ( ph /\ ( c e. A /\ d e. A ) /\ c < d ) -> E <_ ( d - c ) ) <-> ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) -> E <_ ( C - c ) ) ) ) | 
						
							| 944 | 943 515 | vtoclg |  |-  ( C e. A -> ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) -> E <_ ( C - c ) ) ) | 
						
							| 945 | 937 944 | mpcom |  |-  ( ( ph /\ ( c e. A /\ C e. A ) /\ c < C ) -> E <_ ( C - c ) ) | 
						
							| 946 | 936 945 | vtoclg |  |-  ( ( a + ( j x. T ) ) e. A -> ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ C e. A ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) ) | 
						
							| 947 | 930 946 | mpcom |  |-  ( ( ph /\ ( ( a + ( j x. T ) ) e. A /\ C e. A ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 948 | 926 927 928 929 947 | syl121anc |  |-  ( ( ( ps /\ ( a + ( j x. T ) ) e. A ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 949 | 948 | adantlrr |  |-  ( ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 950 | 949 | 3adantl2 |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 951 | 950 | adantlr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( C - ( a + ( j x. T ) ) ) ) | 
						
							| 952 | 892 | adantr |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> C e. CC ) | 
						
							| 953 | 599 | sselda |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( b + ( ( j - 1 ) x. T ) ) e. RR ) | 
						
							| 954 | 953 | recnd |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( b + ( ( j - 1 ) x. T ) ) e. CC ) | 
						
							| 955 | 952 954 | npcand |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) = C ) | 
						
							| 956 | 955 | eqcomd |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> C = ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) ) | 
						
							| 957 | 956 | oveq1d |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 958 | 957 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 959 | 958 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 960 | 959 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 961 |  | oveq2 |  |-  ( ( b + ( ( j - 1 ) x. T ) ) = B -> ( C - ( b + ( ( j - 1 ) x. T ) ) ) = ( C - B ) ) | 
						
							| 962 | 961 | oveq1d |  |-  ( ( b + ( ( j - 1 ) x. T ) ) = B -> ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) = ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) ) | 
						
							| 963 | 962 | oveq1d |  |-  ( ( b + ( ( j - 1 ) x. T ) ) = B -> ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 964 | 963 | adantl |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( ( C - ( b + ( ( j - 1 ) x. T ) ) ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 965 | 4 | eqcomi |  |-  ( C - B ) = T | 
						
							| 966 | 965 | oveq1i |  |-  ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) = ( T + ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 967 | 966 | a1i |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) = ( T + ( b + ( ( j - 1 ) x. T ) ) ) ) | 
						
							| 968 | 318 | adantr |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> T e. CC ) | 
						
							| 969 | 968 954 | addcomd |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( T + ( b + ( ( j - 1 ) x. T ) ) ) = ( ( b + ( ( j - 1 ) x. T ) ) + T ) ) | 
						
							| 970 | 967 969 | eqtrd |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) = ( ( b + ( ( j - 1 ) x. T ) ) + T ) ) | 
						
							| 971 | 970 | oveq1d |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) + T ) - ( a + ( j x. T ) ) ) ) | 
						
							| 972 | 971 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) + T ) - ( a + ( j x. T ) ) ) ) | 
						
							| 973 | 972 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) + T ) - ( a + ( j x. T ) ) ) ) | 
						
							| 974 | 973 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) + T ) - ( a + ( j x. T ) ) ) ) | 
						
							| 975 | 954 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. CC ) | 
						
							| 976 | 975 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. CC ) | 
						
							| 977 | 976 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( b + ( ( j - 1 ) x. T ) ) e. CC ) | 
						
							| 978 | 318 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> T e. CC ) | 
						
							| 979 | 978 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> T e. CC ) | 
						
							| 980 | 618 | adantrr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. RR ) | 
						
							| 981 | 980 | recnd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. CC ) | 
						
							| 982 | 981 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) e. CC ) | 
						
							| 983 | 982 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( a + ( j x. T ) ) e. CC ) | 
						
							| 984 | 977 979 983 | addsubd |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) + T ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 985 | 974 984 | eqtrd |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( ( ( C - B ) + ( b + ( ( j - 1 ) x. T ) ) ) - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 986 | 960 964 985 | 3eqtrd |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 987 | 986 | adantr |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ ( a + ( j x. T ) ) < C ) -> ( C - ( a + ( j x. T ) ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 988 | 951 987 | breqtrd |  |-  ( ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) /\ ( a + ( j x. T ) ) < C ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 989 | 925 988 | mpdan |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ ( b + ( ( j - 1 ) x. T ) ) = B ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 990 |  | simpl1 |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> ps ) | 
						
							| 991 |  | simpl3r |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 992 |  | simpr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> -. ( b + ( ( j - 1 ) x. T ) ) = B ) | 
						
							| 993 | 269 | 3ad2ant1 |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> B e. RR ) | 
						
							| 994 | 953 | 3adant3 |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( b + ( ( j - 1 ) x. T ) ) e. RR ) | 
						
							| 995 | 273 | sselda |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( b + ( ( j - 1 ) x. T ) ) e. ( B [,] C ) ) | 
						
							| 996 | 269 | adantr |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> B e. RR ) | 
						
							| 997 | 271 | adantr |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> C e. RR ) | 
						
							| 998 |  | elicc2 |  |-  ( ( B e. RR /\ C e. RR ) -> ( ( b + ( ( j - 1 ) x. T ) ) e. ( B [,] C ) <-> ( ( b + ( ( j - 1 ) x. T ) ) e. RR /\ B <_ ( b + ( ( j - 1 ) x. T ) ) /\ ( b + ( ( j - 1 ) x. T ) ) <_ C ) ) ) | 
						
							| 999 | 996 997 998 | syl2anc |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( b + ( ( j - 1 ) x. T ) ) e. ( B [,] C ) <-> ( ( b + ( ( j - 1 ) x. T ) ) e. RR /\ B <_ ( b + ( ( j - 1 ) x. T ) ) /\ ( b + ( ( j - 1 ) x. T ) ) <_ C ) ) ) | 
						
							| 1000 | 995 999 | mpbid |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> ( ( b + ( ( j - 1 ) x. T ) ) e. RR /\ B <_ ( b + ( ( j - 1 ) x. T ) ) /\ ( b + ( ( j - 1 ) x. T ) ) <_ C ) ) | 
						
							| 1001 | 1000 | simp2d |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) -> B <_ ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1002 | 1001 | 3adant3 |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> B <_ ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1003 |  | neqne |  |-  ( -. ( b + ( ( j - 1 ) x. T ) ) = B -> ( b + ( ( j - 1 ) x. T ) ) =/= B ) | 
						
							| 1004 | 1003 | 3ad2ant3 |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> ( b + ( ( j - 1 ) x. T ) ) =/= B ) | 
						
							| 1005 | 993 994 1002 1004 | leneltd |  |-  ( ( ps /\ ( b + ( ( j - 1 ) x. T ) ) e. A /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> B < ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1006 | 990 991 992 1005 | syl3anc |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> B < ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1007 | 390 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> E e. RR ) | 
						
							| 1008 | 1007 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E e. RR ) | 
						
							| 1009 | 953 | adantrl |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. RR ) | 
						
							| 1010 | 1009 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. RR ) | 
						
							| 1011 | 269 | 3ad2ant1 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> B e. RR ) | 
						
							| 1012 | 1010 1011 | resubcld |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) e. RR ) | 
						
							| 1013 | 1012 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) e. RR ) | 
						
							| 1014 | 1009 980 | resubcld |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) e. RR ) | 
						
							| 1015 | 293 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> T e. RR ) | 
						
							| 1016 | 1014 1015 | readdcld |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) e. RR ) | 
						
							| 1017 | 1016 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) e. RR ) | 
						
							| 1018 | 1017 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) e. RR ) | 
						
							| 1019 | 268 | adantr |  |-  ( ( ps /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ph ) | 
						
							| 1020 | 1019 | 3ad2antl1 |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ph ) | 
						
							| 1021 | 1020 7 | syl |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> B e. A ) | 
						
							| 1022 |  | simpl3r |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 1023 |  | simpr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> B < ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1024 |  | simp2r |  |-  ( ( ph /\ ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ( b + ( ( j - 1 ) x. T ) ) e. A ) | 
						
							| 1025 |  | eleq1 |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( d e. A <-> ( b + ( ( j - 1 ) x. T ) ) e. A ) ) | 
						
							| 1026 | 1025 | anbi2d |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( ( B e. A /\ d e. A ) <-> ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) ) | 
						
							| 1027 |  | breq2 |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( B < d <-> B < ( b + ( ( j - 1 ) x. T ) ) ) ) | 
						
							| 1028 | 1026 1027 | 3anbi23d |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) <-> ( ph /\ ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) ) ) | 
						
							| 1029 |  | oveq1 |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( d - B ) = ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) | 
						
							| 1030 | 1029 | breq2d |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( E <_ ( d - B ) <-> E <_ ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) ) | 
						
							| 1031 | 1028 1030 | imbi12d |  |-  ( d = ( b + ( ( j - 1 ) x. T ) ) -> ( ( ( ph /\ ( B e. A /\ d e. A ) /\ B < d ) -> E <_ ( d - B ) ) <-> ( ( ph /\ ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E <_ ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) ) ) | 
						
							| 1032 | 1031 517 | vtoclg |  |-  ( ( b + ( ( j - 1 ) x. T ) ) e. A -> ( ( ph /\ ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E <_ ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) ) | 
						
							| 1033 | 1024 1032 | mpcom |  |-  ( ( ph /\ ( B e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E <_ ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) | 
						
							| 1034 | 1020 1021 1022 1023 1033 | syl121anc |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E <_ ( ( b + ( ( j - 1 ) x. T ) ) - B ) ) | 
						
							| 1035 | 269 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> B e. RR ) | 
						
							| 1036 | 980 1035 | resubcld |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - B ) e. RR ) | 
						
							| 1037 | 965 1015 | eqeltrid |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( C - B ) e. RR ) | 
						
							| 1038 | 271 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> C e. RR ) | 
						
							| 1039 | 880 | adantrr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( a + ( j x. T ) ) <_ C ) | 
						
							| 1040 | 980 1038 1035 1039 | lesub1dd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( a + ( j x. T ) ) - B ) <_ ( C - B ) ) | 
						
							| 1041 | 1036 1037 1014 1040 | leadd2dd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( ( a + ( j x. T ) ) - B ) ) <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( C - B ) ) ) | 
						
							| 1042 | 975 981 | npcand |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( a + ( j x. T ) ) ) = ( b + ( ( j - 1 ) x. T ) ) ) | 
						
							| 1043 | 1042 | eqcomd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( b + ( ( j - 1 ) x. T ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( a + ( j x. T ) ) ) ) | 
						
							| 1044 | 1043 | oveq1d |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) = ( ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( a + ( j x. T ) ) ) - B ) ) | 
						
							| 1045 | 1014 | recnd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) e. CC ) | 
						
							| 1046 | 891 | adantr |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> B e. CC ) | 
						
							| 1047 | 1045 981 1046 | addsubassd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( a + ( j x. T ) ) ) - B ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( ( a + ( j x. T ) ) - B ) ) ) | 
						
							| 1048 | 1044 1047 | eqtrd |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( ( a + ( j x. T ) ) - B ) ) ) | 
						
							| 1049 | 4 | oveq2i |  |-  ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( C - B ) ) | 
						
							| 1050 | 1049 | a1i |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + ( C - B ) ) ) | 
						
							| 1051 | 1041 1048 1050 | 3brtr4d |  |-  ( ( ps /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1052 | 1051 | 3adant2 |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1053 | 1052 | adantr |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> ( ( b + ( ( j - 1 ) x. T ) ) - B ) <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1054 | 1008 1013 1018 1034 1053 | letrd |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ B < ( b + ( ( j - 1 ) x. T ) ) ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1055 | 1006 1054 | syldan |  |-  ( ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) /\ -. ( b + ( ( j - 1 ) x. T ) ) = B ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1056 | 989 1055 | pm2.61dan |  |-  ( ( ps /\ j e. ZZ /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( ( j - 1 ) x. T ) ) e. A ) ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1057 | 858 859 869 1056 | syl3anc |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> E <_ ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1058 | 720 | eqcomd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) -> ( b - a ) = ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 1059 | 1058 | adantr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k = ( j - 1 ) ) -> ( b - a ) = ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) ) | 
						
							| 1060 | 862 | oveq1d |  |-  ( k = ( j - 1 ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) = ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 1061 | 1060 | adantl |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) = ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) ) | 
						
							| 1062 |  | oveq2 |  |-  ( k = ( j - 1 ) -> ( j - k ) = ( j - ( j - 1 ) ) ) | 
						
							| 1063 | 1062 | oveq1d |  |-  ( k = ( j - 1 ) -> ( ( j - k ) x. T ) = ( ( j - ( j - 1 ) ) x. T ) ) | 
						
							| 1064 | 1063 | adantl |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( ( j - k ) x. T ) = ( ( j - ( j - 1 ) ) x. T ) ) | 
						
							| 1065 |  | 1cnd |  |-  ( j e. ZZ -> 1 e. CC ) | 
						
							| 1066 | 335 1065 | nncand |  |-  ( j e. ZZ -> ( j - ( j - 1 ) ) = 1 ) | 
						
							| 1067 | 1066 | oveq1d |  |-  ( j e. ZZ -> ( ( j - ( j - 1 ) ) x. T ) = ( 1 x. T ) ) | 
						
							| 1068 | 1067 | ad2antlr |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( ( j - ( j - 1 ) ) x. T ) = ( 1 x. T ) ) | 
						
							| 1069 | 319 | ad2antrr |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( 1 x. T ) = T ) | 
						
							| 1070 | 1064 1068 1069 | 3eqtrd |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( ( j - k ) x. T ) = T ) | 
						
							| 1071 | 1061 1070 | oveq12d |  |-  ( ( ( ps /\ j e. ZZ ) /\ k = ( j - 1 ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1072 | 1071 | adantlrr |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k = ( j - 1 ) ) -> ( ( ( b + ( k x. T ) ) - ( a + ( j x. T ) ) ) + ( ( j - k ) x. T ) ) = ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) ) | 
						
							| 1073 | 1059 1072 | eqtr2d |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) ) /\ k = ( j - 1 ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) = ( b - a ) ) | 
						
							| 1074 | 1073 | 3adantl3 |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> ( ( ( b + ( ( j - 1 ) x. T ) ) - ( a + ( j x. T ) ) ) + T ) = ( b - a ) ) | 
						
							| 1075 | 1057 1074 | breqtrd |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k = ( j - 1 ) ) -> E <_ ( b - a ) ) | 
						
							| 1076 | 839 857 1075 | syl2anc |  |-  ( ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) /\ -. k < ( j - 1 ) ) -> E <_ ( b - a ) ) | 
						
							| 1077 | 838 1076 | pm2.61dan |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k < j ) /\ ( b + ( k x. T ) ) < ( a + ( j x. T ) ) ) -> E <_ ( b - a ) ) | 
						
							| 1078 | 724 776 732 1077 | syl21anc |  |-  ( ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) /\ -. ( a + ( j x. T ) ) <_ ( b + ( k x. T ) ) ) -> E <_ ( b - a ) ) | 
						
							| 1079 | 723 1078 | pm2.61dan |  |-  ( ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) /\ k <_ j ) -> E <_ ( b - a ) ) | 
						
							| 1080 | 387 1079 | mpdan |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( b - a ) ) | 
						
							| 1081 | 309 302 358 | ltled |  |-  ( ps -> a <_ b ) | 
						
							| 1082 | 309 302 1081 | abssuble0d |  |-  ( ps -> ( abs ` ( a - b ) ) = ( b - a ) ) | 
						
							| 1083 | 1082 | eqcomd |  |-  ( ps -> ( b - a ) = ( abs ` ( a - b ) ) ) | 
						
							| 1084 | 1083 | 3ad2ant1 |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> ( b - a ) = ( abs ` ( a - b ) ) ) | 
						
							| 1085 | 1080 1084 | breqtrd |  |-  ( ( ps /\ ( j e. ZZ /\ k e. ZZ ) /\ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( a - b ) ) ) | 
						
							| 1086 | 1085 | 3exp |  |-  ( ps -> ( ( j e. ZZ /\ k e. ZZ ) -> ( ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) -> E <_ ( abs ` ( a - b ) ) ) ) ) | 
						
							| 1087 | 1086 | rexlimdvv |  |-  ( ps -> ( E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) -> E <_ ( abs ` ( a - b ) ) ) ) | 
						
							| 1088 | 265 1087 | mpd |  |-  ( ps -> E <_ ( abs ` ( a - b ) ) ) | 
						
							| 1089 | 18 1088 | sylbir |  |-  ( ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( a - b ) ) ) | 
						
							| 1090 | 264 1089 | chvarvv |  |-  ( ( ( ph /\ ( y e. RR /\ b e. RR /\ y < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - b ) ) ) | 
						
							| 1091 | 251 1090 | chvarvv |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y < z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1092 | 231 237 238 1091 | syl21anc |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ y < z ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1093 |  | simpr |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> -. y < z ) | 
						
							| 1094 |  | simpl3 |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> y =/= z ) | 
						
							| 1095 |  | simpl1 |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> y e. RR ) | 
						
							| 1096 |  | simpl2 |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> z e. RR ) | 
						
							| 1097 | 1095 1096 | lttri2d |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> ( y =/= z <-> ( y < z \/ z < y ) ) ) | 
						
							| 1098 | 1094 1097 | mpbid |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> ( y < z \/ z < y ) ) | 
						
							| 1099 | 1098 | ord |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> ( -. y < z -> z < y ) ) | 
						
							| 1100 | 1093 1099 | mpd |  |-  ( ( ( y e. RR /\ z e. RR /\ y =/= z ) /\ -. y < z ) -> z < y ) | 
						
							| 1101 | 1100 | adantll |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ -. y < z ) -> z < y ) | 
						
							| 1102 | 1101 | adantlr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ -. y < z ) -> z < y ) | 
						
							| 1103 |  | simplll |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> ph ) | 
						
							| 1104 |  | simplr |  |-  ( ( ( y e. RR /\ z e. RR ) /\ z < y ) -> z e. RR ) | 
						
							| 1105 |  | simpll |  |-  ( ( ( y e. RR /\ z e. RR ) /\ z < y ) -> y e. RR ) | 
						
							| 1106 |  | simpr |  |-  ( ( ( y e. RR /\ z e. RR ) /\ z < y ) -> z < y ) | 
						
							| 1107 | 1104 1105 1106 | 3jca |  |-  ( ( ( y e. RR /\ z e. RR ) /\ z < y ) -> ( z e. RR /\ y e. RR /\ z < y ) ) | 
						
							| 1108 | 1107 | adantll |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ z < y ) -> ( z e. RR /\ y e. RR /\ z < y ) ) | 
						
							| 1109 | 1108 | adantlr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> ( z e. RR /\ y e. RR /\ z < y ) ) | 
						
							| 1110 |  | oveq1 |  |-  ( j = i -> ( j x. T ) = ( i x. T ) ) | 
						
							| 1111 | 1110 | oveq2d |  |-  ( j = i -> ( y + ( j x. T ) ) = ( y + ( i x. T ) ) ) | 
						
							| 1112 | 1111 | eleq1d |  |-  ( j = i -> ( ( y + ( j x. T ) ) e. A <-> ( y + ( i x. T ) ) e. A ) ) | 
						
							| 1113 | 1112 | anbi1d |  |-  ( j = i -> ( ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) <-> ( ( y + ( i x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) ) | 
						
							| 1114 |  | oveq1 |  |-  ( k = l -> ( k x. T ) = ( l x. T ) ) | 
						
							| 1115 | 1114 | oveq2d |  |-  ( k = l -> ( z + ( k x. T ) ) = ( z + ( l x. T ) ) ) | 
						
							| 1116 | 1115 | eleq1d |  |-  ( k = l -> ( ( z + ( k x. T ) ) e. A <-> ( z + ( l x. T ) ) e. A ) ) | 
						
							| 1117 | 1116 | anbi2d |  |-  ( k = l -> ( ( ( y + ( i x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) <-> ( ( y + ( i x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) ) ) | 
						
							| 1118 | 1113 1117 | cbvrex2vw |  |-  ( E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) <-> E. i e. ZZ E. l e. ZZ ( ( y + ( i x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) ) | 
						
							| 1119 |  | oveq1 |  |-  ( i = k -> ( i x. T ) = ( k x. T ) ) | 
						
							| 1120 | 1119 | oveq2d |  |-  ( i = k -> ( y + ( i x. T ) ) = ( y + ( k x. T ) ) ) | 
						
							| 1121 | 1120 | eleq1d |  |-  ( i = k -> ( ( y + ( i x. T ) ) e. A <-> ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1122 | 1121 | anbi1d |  |-  ( i = k -> ( ( ( y + ( i x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) <-> ( ( y + ( k x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) ) ) | 
						
							| 1123 |  | oveq1 |  |-  ( l = j -> ( l x. T ) = ( j x. T ) ) | 
						
							| 1124 | 1123 | oveq2d |  |-  ( l = j -> ( z + ( l x. T ) ) = ( z + ( j x. T ) ) ) | 
						
							| 1125 | 1124 | eleq1d |  |-  ( l = j -> ( ( z + ( l x. T ) ) e. A <-> ( z + ( j x. T ) ) e. A ) ) | 
						
							| 1126 | 1125 | anbi2d |  |-  ( l = j -> ( ( ( y + ( k x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) <-> ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) ) ) | 
						
							| 1127 | 1122 1126 | cbvrex2vw |  |-  ( E. i e. ZZ E. l e. ZZ ( ( y + ( i x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) <-> E. k e. ZZ E. j e. ZZ ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) ) | 
						
							| 1128 |  | rexcom |  |-  ( E. k e. ZZ E. j e. ZZ ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) ) | 
						
							| 1129 |  | ancom |  |-  ( ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) <-> ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1130 | 1129 | 2rexbii |  |-  ( E. j e. ZZ E. k e. ZZ ( ( y + ( k x. T ) ) e. A /\ ( z + ( j x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1131 | 1127 1128 1130 | 3bitri |  |-  ( E. i e. ZZ E. l e. ZZ ( ( y + ( i x. T ) ) e. A /\ ( z + ( l x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1132 | 1118 1131 | sylbb |  |-  ( E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) -> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1133 | 1132 | ad2antlr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1134 |  | eleq1 |  |-  ( b = y -> ( b e. RR <-> y e. RR ) ) | 
						
							| 1135 |  | breq2 |  |-  ( b = y -> ( z < b <-> z < y ) ) | 
						
							| 1136 | 1134 1135 | 3anbi23d |  |-  ( b = y -> ( ( z e. RR /\ b e. RR /\ z < b ) <-> ( z e. RR /\ y e. RR /\ z < y ) ) ) | 
						
							| 1137 | 1136 | anbi2d |  |-  ( b = y -> ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) <-> ( ph /\ ( z e. RR /\ y e. RR /\ z < y ) ) ) ) | 
						
							| 1138 |  | oveq1 |  |-  ( b = y -> ( b + ( k x. T ) ) = ( y + ( k x. T ) ) ) | 
						
							| 1139 | 1138 | eleq1d |  |-  ( b = y -> ( ( b + ( k x. T ) ) e. A <-> ( y + ( k x. T ) ) e. A ) ) | 
						
							| 1140 | 1139 | anbi2d |  |-  ( b = y -> ( ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) ) | 
						
							| 1141 | 1140 | 2rexbidv |  |-  ( b = y -> ( E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) ) | 
						
							| 1142 | 1137 1141 | anbi12d |  |-  ( b = y -> ( ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) <-> ( ( ph /\ ( z e. RR /\ y e. RR /\ z < y ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) ) ) | 
						
							| 1143 |  | oveq2 |  |-  ( b = y -> ( z - b ) = ( z - y ) ) | 
						
							| 1144 | 1143 | fveq2d |  |-  ( b = y -> ( abs ` ( z - b ) ) = ( abs ` ( z - y ) ) ) | 
						
							| 1145 | 1144 | breq2d |  |-  ( b = y -> ( E <_ ( abs ` ( z - b ) ) <-> E <_ ( abs ` ( z - y ) ) ) ) | 
						
							| 1146 | 1142 1145 | imbi12d |  |-  ( b = y -> ( ( ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( z - b ) ) ) <-> ( ( ( ph /\ ( z e. RR /\ y e. RR /\ z < y ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( z - y ) ) ) ) ) | 
						
							| 1147 |  | eleq1 |  |-  ( a = z -> ( a e. RR <-> z e. RR ) ) | 
						
							| 1148 |  | breq1 |  |-  ( a = z -> ( a < b <-> z < b ) ) | 
						
							| 1149 | 1147 1148 | 3anbi13d |  |-  ( a = z -> ( ( a e. RR /\ b e. RR /\ a < b ) <-> ( z e. RR /\ b e. RR /\ z < b ) ) ) | 
						
							| 1150 | 1149 | anbi2d |  |-  ( a = z -> ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) <-> ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) ) ) | 
						
							| 1151 |  | oveq1 |  |-  ( a = z -> ( a + ( j x. T ) ) = ( z + ( j x. T ) ) ) | 
						
							| 1152 | 1151 | eleq1d |  |-  ( a = z -> ( ( a + ( j x. T ) ) e. A <-> ( z + ( j x. T ) ) e. A ) ) | 
						
							| 1153 | 1152 | anbi1d |  |-  ( a = z -> ( ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 1154 | 1153 | 2rexbidv |  |-  ( a = z -> ( E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) <-> E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) | 
						
							| 1155 | 1150 1154 | anbi12d |  |-  ( a = z -> ( ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) <-> ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) ) ) | 
						
							| 1156 |  | oveq1 |  |-  ( a = z -> ( a - b ) = ( z - b ) ) | 
						
							| 1157 | 1156 | fveq2d |  |-  ( a = z -> ( abs ` ( a - b ) ) = ( abs ` ( z - b ) ) ) | 
						
							| 1158 | 1157 | breq2d |  |-  ( a = z -> ( E <_ ( abs ` ( a - b ) ) <-> E <_ ( abs ` ( z - b ) ) ) ) | 
						
							| 1159 | 1155 1158 | imbi12d |  |-  ( a = z -> ( ( ( ( ph /\ ( a e. RR /\ b e. RR /\ a < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( a + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( a - b ) ) ) <-> ( ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( z - b ) ) ) ) ) | 
						
							| 1160 | 1159 1089 | chvarvv |  |-  ( ( ( ph /\ ( z e. RR /\ b e. RR /\ z < b ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( b + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( z - b ) ) ) | 
						
							| 1161 | 1146 1160 | chvarvv |  |-  ( ( ( ph /\ ( z e. RR /\ y e. RR /\ z < y ) ) /\ E. j e. ZZ E. k e. ZZ ( ( z + ( j x. T ) ) e. A /\ ( y + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( z - y ) ) ) | 
						
							| 1162 | 1103 1109 1133 1161 | syl21anc |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> E <_ ( abs ` ( z - y ) ) ) | 
						
							| 1163 |  | recn |  |-  ( z e. RR -> z e. CC ) | 
						
							| 1164 | 1163 | adantl |  |-  ( ( y e. RR /\ z e. RR ) -> z e. CC ) | 
						
							| 1165 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 1166 | 1165 | adantr |  |-  ( ( y e. RR /\ z e. RR ) -> y e. CC ) | 
						
							| 1167 | 1164 1166 | abssubd |  |-  ( ( y e. RR /\ z e. RR ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 1168 | 1167 | adantl |  |-  ( ( ph /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 1169 | 1168 | ad2antrr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 1170 | 1162 1169 | breqtrd |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ z < y ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1171 | 1170 | ex |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) -> ( z < y -> E <_ ( abs ` ( y - z ) ) ) ) | 
						
							| 1172 | 1171 | 3adantlr3 |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) -> ( z < y -> E <_ ( abs ` ( y - z ) ) ) ) | 
						
							| 1173 | 1172 | adantr |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ -. y < z ) -> ( z < y -> E <_ ( abs ` ( y - z ) ) ) ) | 
						
							| 1174 | 1102 1173 | mpd |  |-  ( ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) /\ -. y < z ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1175 | 1092 1174 | pm2.61dan |  |-  ( ( ( ph /\ ( y e. RR /\ z e. RR /\ y =/= z ) ) /\ E. j e. ZZ E. k e. ZZ ( ( y + ( j x. T ) ) e. A /\ ( z + ( k x. T ) ) e. A ) ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1176 | 198 206 230 1175 | syl21anc |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> E <_ ( abs ` ( y - z ) ) ) | 
						
							| 1177 | 389 | ad2antrr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> E e. RR ) | 
						
							| 1178 | 200 203 | resubcld |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> ( y - z ) e. RR ) | 
						
							| 1179 | 1178 | recnd |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> ( y - z ) e. CC ) | 
						
							| 1180 | 1179 | abscld |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> ( abs ` ( y - z ) ) e. RR ) | 
						
							| 1181 | 1180 | adantr |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> ( abs ` ( y - z ) ) e. RR ) | 
						
							| 1182 | 1177 1181 | lenltd |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> ( E <_ ( abs ` ( y - z ) ) <-> -. ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1183 | 1176 1182 | mpbid |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> -. ( abs ` ( y - z ) ) < E ) | 
						
							| 1184 |  | nan |  |-  ( ( ( ph /\ ( y e. H /\ z e. H ) ) -> -. ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) <-> ( ( ( ph /\ ( y e. H /\ z e. H ) ) /\ y =/= z ) -> -. ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1185 | 1183 1184 | mpbir |  |-  ( ( ph /\ ( y e. H /\ z e. H ) ) -> -. ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1186 | 1185 | ralrimivva |  |-  ( ph -> A. y e. H A. z e. H -. ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1187 |  | ralnex2 |  |-  ( A. y e. H A. z e. H -. ( y =/= z /\ ( abs ` ( y - z ) ) < E ) <-> -. E. y e. H E. z e. H ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1188 | 1186 1187 | sylib |  |-  ( ph -> -. E. y e. H E. z e. H ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1189 | 1188 | ad2antrr |  |-  ( ( ( ph /\ x e. U. K ) /\ x e. ( ( limPt ` J ) ` H ) ) -> -. E. y e. H E. z e. H ( y =/= z /\ ( abs ` ( y - z ) ) < E ) ) | 
						
							| 1190 | 197 1189 | pm2.65da |  |-  ( ( ph /\ x e. U. K ) -> -. x e. ( ( limPt ` J ) ` H ) ) | 
						
							| 1191 | 1190 | intnanrd |  |-  ( ( ph /\ x e. U. K ) -> -. ( x e. ( ( limPt ` J ) ` H ) /\ x e. ( X [,] Y ) ) ) | 
						
							| 1192 |  | elin |  |-  ( x e. ( ( ( limPt ` J ) ` H ) i^i ( X [,] Y ) ) <-> ( x e. ( ( limPt ` J ) ` H ) /\ x e. ( X [,] Y ) ) ) | 
						
							| 1193 | 1191 1192 | sylnibr |  |-  ( ( ph /\ x e. U. K ) -> -. x e. ( ( ( limPt ` J ) ` H ) i^i ( X [,] Y ) ) ) | 
						
							| 1194 | 26 | a1i |  |-  ( ( ph /\ x e. U. K ) -> J e. Top ) | 
						
							| 1195 | 27 | adantr |  |-  ( ( ph /\ x e. U. K ) -> ( X [,] Y ) C_ RR ) | 
						
							| 1196 | 24 | adantr |  |-  ( ( ph /\ x e. U. K ) -> H C_ ( X [,] Y ) ) | 
						
							| 1197 | 30 16 | restlp |  |-  ( ( J e. Top /\ ( X [,] Y ) C_ RR /\ H C_ ( X [,] Y ) ) -> ( ( limPt ` K ) ` H ) = ( ( ( limPt ` J ) ` H ) i^i ( X [,] Y ) ) ) | 
						
							| 1198 | 1194 1195 1196 1197 | syl3anc |  |-  ( ( ph /\ x e. U. K ) -> ( ( limPt ` K ) ` H ) = ( ( ( limPt ` J ) ` H ) i^i ( X [,] Y ) ) ) | 
						
							| 1199 | 1193 1198 | neleqtrrd |  |-  ( ( ph /\ x e. U. K ) -> -. x e. ( ( limPt ` K ) ` H ) ) | 
						
							| 1200 | 1199 | nrexdv |  |-  ( ph -> -. E. x e. U. K x e. ( ( limPt ` K ) ` H ) ) | 
						
							| 1201 | 1200 | adantr |  |-  ( ( ph /\ -. H e. Fin ) -> -. E. x e. U. K x e. ( ( limPt ` K ) ` H ) ) | 
						
							| 1202 | 41 1201 | condan |  |-  ( ph -> H e. Fin ) |