Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem42.b |
|
2 |
|
fourierdlem42.c |
|
3 |
|
fourierdlem42.bc |
|
4 |
|
fourierdlem42.t |
|
5 |
|
fourierdlem42.a |
|
6 |
|
fourierdlem42.af |
|
7 |
|
fourierdlem42.ba |
|
8 |
|
fourierdlem42.ca |
|
9 |
|
fourierdlem42.d |
|
10 |
|
fourierdlem42.i |
|
11 |
|
fourierdlem42.r |
|
12 |
|
fourierdlem42.e |
|
13 |
|
fourierdlem42.x |
|
14 |
|
fourierdlem42.y |
|
15 |
|
fourierdlem42.j |
|
16 |
|
fourierdlem42.k |
|
17 |
|
fourierdlem42.h |
|
18 |
|
fourierdlem42.15 |
|
19 |
15 16
|
icccmp |
|
20 |
13 14 19
|
syl2anc |
|
21 |
20
|
adantr |
|
22 |
|
ssrab2 |
|
23 |
22
|
a1i |
|
24 |
17 23
|
eqsstrid |
|
25 |
|
retop |
|
26 |
15 25
|
eqeltri |
|
27 |
13 14
|
iccssred |
|
28 |
|
uniretop |
|
29 |
15
|
unieqi |
|
30 |
28 29
|
eqtr4i |
|
31 |
30
|
restuni |
|
32 |
26 27 31
|
sylancr |
|
33 |
16
|
unieqi |
|
34 |
33
|
eqcomi |
|
35 |
32 34
|
eqtrdi |
|
36 |
24 35
|
sseqtrd |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
|
eqid |
|
40 |
39
|
bwth |
|
41 |
21 37 38 40
|
syl3anc |
|
42 |
24 27
|
sstrd |
|
43 |
42
|
ad2antrr |
|
44 |
|
ne0i |
|
45 |
44
|
adantl |
|
46 |
|
absf |
|
47 |
|
ffn |
|
48 |
46 47
|
ax-mp |
|
49 |
|
subf |
|
50 |
|
ffn |
|
51 |
49 50
|
ax-mp |
|
52 |
|
frn |
|
53 |
49 52
|
ax-mp |
|
54 |
|
fnco |
|
55 |
48 51 53 54
|
mp3an |
|
56 |
9
|
fneq1i |
|
57 |
55 56
|
mpbir |
|
58 |
1 2
|
iccssred |
|
59 |
|
ax-resscn |
|
60 |
58 59
|
sstrdi |
|
61 |
5 60
|
sstrd |
|
62 |
|
xpss12 |
|
63 |
61 61 62
|
syl2anc |
|
64 |
63
|
ssdifssd |
|
65 |
10 64
|
eqsstrid |
|
66 |
|
fnssres |
|
67 |
57 65 66
|
sylancr |
|
68 |
|
fvres |
|
69 |
68
|
adantl |
|
70 |
9
|
fveq1i |
|
71 |
70
|
a1i |
|
72 |
|
ffun |
|
73 |
49 72
|
ax-mp |
|
74 |
65
|
sselda |
|
75 |
49
|
fdmi |
|
76 |
74 75
|
eleqtrrdi |
|
77 |
|
fvco |
|
78 |
73 76 77
|
sylancr |
|
79 |
69 71 78
|
3eqtrd |
|
80 |
49
|
a1i |
|
81 |
80 74
|
ffvelrnd |
|
82 |
81
|
abscld |
|
83 |
79 82
|
eqeltrd |
|
84 |
|
elxp2 |
|
85 |
74 84
|
sylib |
|
86 |
|
fveq2 |
|
87 |
86
|
3ad2ant3 |
|
88 |
|
df-ov |
|
89 |
|
simp1l |
|
90 |
|
simpr |
|
91 |
|
simpl |
|
92 |
90 91
|
eqeltrrd |
|
93 |
92
|
adantll |
|
94 |
93
|
3adant2 |
|
95 |
61
|
adantr |
|
96 |
10
|
eleq2i |
|
97 |
|
eldif |
|
98 |
96 97
|
sylbb |
|
99 |
98
|
simpld |
|
100 |
|
opelxp |
|
101 |
99 100
|
sylib |
|
102 |
101
|
adantl |
|
103 |
102
|
simpld |
|
104 |
95 103
|
sseldd |
|
105 |
102
|
simprd |
|
106 |
95 105
|
sseldd |
|
107 |
98
|
simprd |
|
108 |
|
df-br |
|
109 |
107 108
|
sylnibr |
|
110 |
|
vex |
|
111 |
110
|
ideq |
|
112 |
109 111
|
sylnib |
|
113 |
112
|
neqned |
|
114 |
113
|
adantl |
|
115 |
104 106 114
|
subne0d |
|
116 |
89 94 115
|
syl2anc |
|
117 |
88 116
|
eqnetrrid |
|
118 |
87 117
|
eqnetrd |
|
119 |
118
|
3exp |
|
120 |
119
|
rexlimdvv |
|
121 |
85 120
|
mpd |
|
122 |
|
absgt0 |
|
123 |
81 122
|
syl |
|
124 |
121 123
|
mpbid |
|
125 |
79
|
eqcomd |
|
126 |
124 125
|
breqtrd |
|
127 |
83 126
|
elrpd |
|
128 |
127
|
ralrimiva |
|
129 |
|
fnfvrnss |
|
130 |
67 128 129
|
syl2anc |
|
131 |
11 130
|
eqsstrid |
|
132 |
|
ltso |
|
133 |
132
|
a1i |
|
134 |
|
xpfi |
|
135 |
6 6 134
|
syl2anc |
|
136 |
|
diffi |
|
137 |
135 136
|
syl |
|
138 |
10 137
|
eqeltrid |
|
139 |
|
fnfi |
|
140 |
67 138 139
|
syl2anc |
|
141 |
|
rnfi |
|
142 |
140 141
|
syl |
|
143 |
11 142
|
eqeltrid |
|
144 |
11
|
a1i |
|
145 |
9
|
a1i |
|
146 |
145
|
reseq1d |
|
147 |
146
|
fveq1d |
|
148 |
|
opelxp |
|
149 |
7 8 148
|
sylanbrc |
|
150 |
1 3
|
ltned |
|
151 |
150
|
neneqd |
|
152 |
|
ideqg |
|
153 |
8 152
|
syl |
|
154 |
151 153
|
mtbird |
|
155 |
|
df-br |
|
156 |
154 155
|
sylnib |
|
157 |
149 156
|
eldifd |
|
158 |
157 10
|
eleqtrrdi |
|
159 |
|
fvres |
|
160 |
158 159
|
syl |
|
161 |
1
|
recnd |
|
162 |
2
|
recnd |
|
163 |
|
opelxp |
|
164 |
161 162 163
|
sylanbrc |
|
165 |
164 75
|
eleqtrrdi |
|
166 |
|
fvco |
|
167 |
73 165 166
|
sylancr |
|
168 |
|
df-ov |
|
169 |
168
|
eqcomi |
|
170 |
169
|
a1i |
|
171 |
170
|
fveq2d |
|
172 |
167 171
|
eqtrd |
|
173 |
147 160 172
|
3eqtrrd |
|
174 |
|
fnfvelrn |
|
175 |
67 158 174
|
syl2anc |
|
176 |
173 175
|
eqeltrd |
|
177 |
|
ne0i |
|
178 |
176 177
|
syl |
|
179 |
144 178
|
eqnetrd |
|
180 |
|
resss |
|
181 |
|
rnss |
|
182 |
180 181
|
ax-mp |
|
183 |
9
|
rneqi |
|
184 |
|
rncoss |
|
185 |
|
frn |
|
186 |
46 185
|
ax-mp |
|
187 |
184 186
|
sstri |
|
188 |
183 187
|
eqsstri |
|
189 |
182 188
|
sstri |
|
190 |
11 189
|
eqsstri |
|
191 |
190
|
a1i |
|
192 |
|
fiinfcl |
|
193 |
133 143 179 191 192
|
syl13anc |
|
194 |
131 193
|
sseldd |
|
195 |
12 194
|
eqeltrid |
|
196 |
195
|
ad2antrr |
|
197 |
15 43 45 196
|
lptre2pt |
|
198 |
|
simpll |
|
199 |
42
|
sselda |
|
200 |
199
|
adantrr |
|
201 |
200
|
adantr |
|
202 |
42
|
sselda |
|
203 |
202
|
adantrl |
|
204 |
203
|
adantr |
|
205 |
|
simpr |
|
206 |
201 204 205
|
3jca |
|
207 |
17
|
eleq2i |
|
208 |
|
oveq1 |
|
209 |
208
|
eleq1d |
|
210 |
209
|
rexbidv |
|
211 |
|
oveq1 |
|
212 |
211
|
oveq2d |
|
213 |
212
|
eleq1d |
|
214 |
213
|
cbvrexvw |
|
215 |
210 214
|
bitrdi |
|
216 |
215
|
elrab |
|
217 |
207 216
|
sylbb |
|
218 |
217
|
simprd |
|
219 |
218
|
adantr |
|
220 |
17
|
eleq2i |
|
221 |
|
oveq1 |
|
222 |
221
|
eleq1d |
|
223 |
222
|
rexbidv |
|
224 |
223
|
elrab |
|
225 |
220 224
|
sylbb |
|
226 |
225
|
simprd |
|
227 |
226
|
adantl |
|
228 |
|
reeanv |
|
229 |
219 227 228
|
sylanbrc |
|
230 |
229
|
ad2antlr |
|
231 |
|
simplll |
|
232 |
|
simpl1 |
|
233 |
|
simpl2 |
|
234 |
|
simpr |
|
235 |
232 233 234
|
3jca |
|
236 |
235
|
adantll |
|
237 |
236
|
adantlr |
|
238 |
|
simplr |
|
239 |
|
eleq1 |
|
240 |
|
breq2 |
|
241 |
239 240
|
3anbi23d |
|
242 |
241
|
anbi2d |
|
243 |
|
oveq1 |
|
244 |
243
|
eleq1d |
|
245 |
244
|
anbi2d |
|
246 |
245
|
2rexbidv |
|
247 |
242 246
|
anbi12d |
|
248 |
|
oveq2 |
|
249 |
248
|
fveq2d |
|
250 |
249
|
breq2d |
|
251 |
247 250
|
imbi12d |
|
252 |
|
eleq1 |
|
253 |
|
breq1 |
|
254 |
252 253
|
3anbi13d |
|
255 |
254
|
anbi2d |
|
256 |
|
oveq1 |
|
257 |
256
|
eleq1d |
|
258 |
257
|
anbi1d |
|
259 |
258
|
2rexbidv |
|
260 |
255 259
|
anbi12d |
|
261 |
|
oveq1 |
|
262 |
261
|
fveq2d |
|
263 |
262
|
breq2d |
|
264 |
260 263
|
imbi12d |
|
265 |
18
|
simprbi |
|
266 |
18
|
biimpi |
|
267 |
266
|
simpld |
|
268 |
267
|
simpld |
|
269 |
268 1
|
syl |
|
270 |
269
|
adantr |
|
271 |
268 2
|
syl |
|
272 |
271
|
adantr |
|
273 |
268 5
|
syl |
|
274 |
273
|
sselda |
|
275 |
274
|
adantrl |
|
276 |
273
|
sselda |
|
277 |
276
|
adantrr |
|
278 |
270 272 275 277
|
iccsuble |
|
279 |
278 4
|
breqtrrdi |
|
280 |
279
|
3adant2 |
|
281 |
280
|
adantr |
|
282 |
|
simpr |
|
283 |
|
zre |
|
284 |
283
|
adantr |
|
285 |
284
|
ad2antlr |
|
286 |
|
zre |
|
287 |
286
|
adantl |
|
288 |
287
|
ad2antlr |
|
289 |
285 288
|
ltnled |
|
290 |
282 289
|
mpbird |
|
291 |
2 1
|
resubcld |
|
292 |
4 291
|
eqeltrid |
|
293 |
268 292
|
syl |
|
294 |
293
|
ad2antrr |
|
295 |
287
|
adantl |
|
296 |
284
|
adantl |
|
297 |
295 296
|
resubcld |
|
298 |
293
|
adantr |
|
299 |
297 298
|
remulcld |
|
300 |
299
|
adantr |
|
301 |
267
|
simprd |
|
302 |
301
|
simp2d |
|
303 |
302
|
adantr |
|
304 |
286
|
adantl |
|
305 |
293
|
adantr |
|
306 |
304 305
|
remulcld |
|
307 |
306
|
adantrl |
|
308 |
303 307
|
readdcld |
|
309 |
301
|
simp1d |
|
310 |
309
|
adantr |
|
311 |
283
|
adantl |
|
312 |
293
|
adantr |
|
313 |
311 312
|
remulcld |
|
314 |
313
|
adantrr |
|
315 |
310 314
|
readdcld |
|
316 |
308 315
|
resubcld |
|
317 |
316
|
adantr |
|
318 |
293
|
recnd |
|
319 |
318
|
mulid2d |
|
320 |
319
|
eqcomd |
|
321 |
320
|
ad2antrr |
|
322 |
|
simpr |
|
323 |
|
zltlem1 |
|
324 |
323
|
ad2antlr |
|
325 |
322 324
|
mpbid |
|
326 |
284
|
ad2antlr |
|
327 |
|
peano2rem |
|
328 |
295 327
|
syl |
|
329 |
328
|
adantr |
|
330 |
|
1re |
|
331 |
|
resubcl |
|
332 |
330 326 331
|
sylancr |
|
333 |
|
simpr |
|
334 |
326 329 332 333
|
leadd1dd |
|
335 |
|
zcn |
|
336 |
335
|
adantr |
|
337 |
|
1cnd |
|
338 |
336 337
|
pncan3d |
|
339 |
338
|
ad2antlr |
|
340 |
|
zcn |
|
341 |
340
|
adantl |
|
342 |
341 337 336
|
npncand |
|
343 |
342
|
ad2antlr |
|
344 |
334 339 343
|
3brtr3d |
|
345 |
325 344
|
syldan |
|
346 |
330
|
a1i |
|
347 |
297
|
adantr |
|
348 |
1 2
|
posdifd |
|
349 |
3 348
|
mpbid |
|
350 |
349 4
|
breqtrrdi |
|
351 |
292 350
|
elrpd |
|
352 |
268 351
|
syl |
|
353 |
352
|
ad2antrr |
|
354 |
346 347 353
|
lemul1d |
|
355 |
345 354
|
mpbid |
|
356 |
321 355
|
eqbrtrd |
|
357 |
302 309
|
resubcld |
|
358 |
301
|
simp3d |
|
359 |
309 302
|
posdifd |
|
360 |
358 359
|
mpbid |
|
361 |
357 360
|
elrpd |
|
362 |
361
|
adantr |
|
363 |
299 362
|
ltaddrp2d |
|
364 |
302
|
recnd |
|
365 |
364
|
adantr |
|
366 |
306
|
recnd |
|
367 |
366
|
adantrl |
|
368 |
309
|
recnd |
|
369 |
368
|
adantr |
|
370 |
313
|
recnd |
|
371 |
370
|
adantrr |
|
372 |
365 367 369 371
|
addsub4d |
|
373 |
340
|
ad2antll |
|
374 |
335
|
ad2antrl |
|
375 |
318
|
adantr |
|
376 |
373 374 375
|
subdird |
|
377 |
376
|
eqcomd |
|
378 |
377
|
oveq2d |
|
379 |
372 378
|
eqtr2d |
|
380 |
363 379
|
breqtrd |
|
381 |
380
|
adantr |
|
382 |
294 300 317 356 381
|
lelttrd |
|
383 |
294 317
|
ltnled |
|
384 |
382 383
|
mpbid |
|
385 |
290 384
|
syldan |
|
386 |
385
|
3adantl3 |
|
387 |
281 386
|
condan |
|
388 |
190 193
|
sselid |
|
389 |
12 388
|
eqeltrid |
|
390 |
268 389
|
syl |
|
391 |
390
|
3ad2ant1 |
|
392 |
391
|
ad2antrr |
|
393 |
293
|
3ad2ant1 |
|
394 |
393
|
ad2antrr |
|
395 |
284 287
|
resubcld |
|
396 |
395
|
adantl |
|
397 |
396 298
|
remulcld |
|
398 |
397
|
3adant3 |
|
399 |
398
|
ad2antrr |
|
400 |
|
id |
|
401 |
7 8
|
jca |
|
402 |
400 401 3
|
3jca |
|
403 |
|
eleq1 |
|
404 |
403
|
anbi2d |
|
405 |
|
breq2 |
|
406 |
404 405
|
3anbi23d |
|
407 |
|
oveq1 |
|
408 |
407
|
breq2d |
|
409 |
406 408
|
imbi12d |
|
410 |
|
simp2l |
|
411 |
|
eleq1 |
|
412 |
411
|
anbi1d |
|
413 |
|
breq1 |
|
414 |
412 413
|
3anbi23d |
|
415 |
|
oveq2 |
|
416 |
415
|
breq2d |
|
417 |
414 416
|
imbi12d |
|
418 |
190
|
a1i |
|
419 |
|
0re |
|
420 |
11
|
eleq2i |
|
421 |
420
|
biimpi |
|
422 |
421
|
adantl |
|
423 |
67
|
adantr |
|
424 |
|
fvelrnb |
|
425 |
423 424
|
syl |
|
426 |
422 425
|
mpbid |
|
427 |
127
|
rpge0d |
|
428 |
427
|
3adant3 |
|
429 |
|
simp3 |
|
430 |
428 429
|
breqtrd |
|
431 |
430
|
3exp |
|
432 |
431
|
adantr |
|
433 |
432
|
rexlimdv |
|
434 |
426 433
|
mpd |
|
435 |
434
|
ralrimiva |
|
436 |
|
breq1 |
|
437 |
436
|
ralbidv |
|
438 |
437
|
rspcev |
|
439 |
419 435 438
|
sylancr |
|
440 |
439
|
3ad2ant1 |
|
441 |
|
pm3.22 |
|
442 |
|
opelxp |
|
443 |
441 442
|
sylibr |
|
444 |
443
|
3ad2ant2 |
|
445 |
5 58
|
sstrd |
|
446 |
445
|
sselda |
|
447 |
446
|
adantrr |
|
448 |
447
|
3adant3 |
|
449 |
|
simp3 |
|
450 |
448 449
|
gtned |
|
451 |
450
|
neneqd |
|
452 |
|
df-br |
|
453 |
|
vex |
|
454 |
453
|
ideq |
|
455 |
452 454
|
bitr3i |
|
456 |
451 455
|
sylnibr |
|
457 |
444 456
|
eldifd |
|
458 |
457 10
|
eleqtrrdi |
|
459 |
448 449
|
ltned |
|
460 |
146
|
3ad2ant1 |
|
461 |
460
|
fveq1d |
|
462 |
443
|
3ad2ant2 |
|
463 |
|
necom |
|
464 |
463
|
biimpi |
|
465 |
464
|
neneqd |
|
466 |
465
|
3ad2ant3 |
|
467 |
466 455
|
sylnibr |
|
468 |
462 467
|
eldifd |
|
469 |
468 10
|
eleqtrrdi |
|
470 |
|
fvres |
|
471 |
469 470
|
syl |
|
472 |
|
simp1 |
|
473 |
472 469
|
jca |
|
474 |
|
eleq1 |
|
475 |
474
|
anbi2d |
|
476 |
|
eleq1 |
|
477 |
475 476
|
imbi12d |
|
478 |
477 76
|
vtoclg |
|
479 |
469 473 478
|
sylc |
|
480 |
|
fvco |
|
481 |
73 479 480
|
sylancr |
|
482 |
|
df-ov |
|
483 |
482
|
eqcomi |
|
484 |
483
|
fveq2i |
|
485 |
481 484
|
eqtrdi |
|
486 |
461 471 485
|
3eqtrd |
|
487 |
459 486
|
syld3an3 |
|
488 |
445
|
sselda |
|
489 |
488
|
adantrl |
|
490 |
489
|
3adant3 |
|
491 |
448 490 449
|
ltled |
|
492 |
448 490 491
|
abssubge0d |
|
493 |
487 492
|
eqtrd |
|
494 |
|
fveq2 |
|
495 |
494
|
eqeq1d |
|
496 |
495
|
rspcev |
|
497 |
458 493 496
|
syl2anc |
|
498 |
489 447
|
resubcld |
|
499 |
|
elex |
|
500 |
498 499
|
syl |
|
501 |
500
|
3adant3 |
|
502 |
|
simp1 |
|
503 |
|
eleq1 |
|
504 |
|
eqeq2 |
|
505 |
504
|
rexbidv |
|
506 |
503 505
|
bibi12d |
|
507 |
506
|
imbi2d |
|
508 |
67 424
|
syl |
|
509 |
507 508
|
vtoclg |
|
510 |
501 502 509
|
sylc |
|
511 |
497 510
|
mpbird |
|
512 |
511 11
|
eleqtrrdi |
|
513 |
|
infrelb |
|
514 |
418 440 512 513
|
syl3anc |
|
515 |
12 514
|
eqbrtrid |
|
516 |
417 515
|
vtoclg |
|
517 |
410 516
|
mpcom |
|
518 |
409 517
|
vtoclg |
|
519 |
8 402 518
|
sylc |
|
520 |
519 4
|
breqtrrdi |
|
521 |
268 520
|
syl |
|
522 |
521
|
3ad2ant1 |
|
523 |
522
|
ad2antrr |
|
524 |
364
|
adantr |
|
525 |
524 366
|
pncan2d |
|
526 |
525
|
oveq1d |
|
527 |
340
|
adantl |
|
528 |
318
|
adantr |
|
529 |
419
|
a1i |
|
530 |
529 350
|
gtned |
|
531 |
268 530
|
syl |
|
532 |
531
|
adantr |
|
533 |
527 528 532
|
divcan4d |
|
534 |
526 533
|
eqtr2d |
|
535 |
534
|
adantrl |
|
536 |
535
|
adantr |
|
537 |
|
oveq1 |
|
538 |
537
|
oveq1d |
|
539 |
538
|
adantl |
|
540 |
368
|
adantr |
|
541 |
364
|
adantr |
|
542 |
540 370 541
|
addsubd |
|
543 |
540 541
|
subcld |
|
544 |
543 370
|
addcomd |
|
545 |
542 544
|
eqtrd |
|
546 |
545
|
oveq1d |
|
547 |
318
|
adantr |
|
548 |
531
|
adantr |
|
549 |
370 543 547 548
|
divdird |
|
550 |
335
|
adantl |
|
551 |
550 547 548
|
divcan4d |
|
552 |
551
|
oveq1d |
|
553 |
546 549 552
|
3eqtrd |
|
554 |
553
|
adantrr |
|
555 |
554
|
adantr |
|
556 |
536 539 555
|
3eqtr2d |
|
557 |
309 302
|
resubcld |
|
558 |
309 302
|
sublt0d |
|
559 |
358 558
|
mpbird |
|
560 |
557 352 559
|
divlt0gt0d |
|
561 |
560
|
adantr |
|
562 |
335
|
subidd |
|
563 |
562
|
eqcomd |
|
564 |
563
|
adantl |
|
565 |
561 564
|
breqtrd |
|
566 |
557 293 531
|
redivcld |
|
567 |
566
|
adantr |
|
568 |
311 567 311
|
ltaddsub2d |
|
569 |
565 568
|
mpbird |
|
570 |
569
|
adantrr |
|
571 |
570
|
adantr |
|
572 |
556 571
|
eqbrtrd |
|
573 |
320
|
ad2antrr |
|
574 |
|
simpr |
|
575 |
|
simplr |
|
576 |
|
simpll |
|
577 |
|
zltp1le |
|
578 |
575 576 577
|
syl2anc |
|
579 |
574 578
|
mpbid |
|
580 |
286
|
ad2antlr |
|
581 |
330
|
a1i |
|
582 |
283
|
ad2antrr |
|
583 |
580 581 582
|
leaddsub2d |
|
584 |
579 583
|
mpbid |
|
585 |
584
|
adantll |
|
586 |
330
|
a1i |
|
587 |
395
|
ad2antlr |
|
588 |
352
|
ad2antrr |
|
589 |
586 587 588
|
lemul1d |
|
590 |
585 589
|
mpbid |
|
591 |
573 590
|
eqbrtrd |
|
592 |
572 591
|
syldan |
|
593 |
592
|
adantlr |
|
594 |
593
|
3adantll3 |
|
595 |
392 394 399 523 594
|
letrd |
|
596 |
|
oveq2 |
|
597 |
596
|
oveq1d |
|
598 |
597
|
adantl |
|
599 |
268 445
|
syl |
|
600 |
599
|
sselda |
|
601 |
600
|
adantrl |
|
602 |
601
|
recnd |
|
603 |
602
|
subidd |
|
604 |
603
|
oveq1d |
|
605 |
604
|
adantr |
|
606 |
598 605
|
eqtrd |
|
607 |
606
|
3adantl2 |
|
608 |
607
|
adantlr |
|
609 |
374 373
|
subcld |
|
610 |
609 375
|
mulcld |
|
611 |
610
|
addid2d |
|
612 |
611
|
3adant3 |
|
613 |
612
|
ad2antrr |
|
614 |
608 613
|
eqtr2d |
|
615 |
595 614
|
breqtrd |
|
616 |
615
|
adantlr |
|
617 |
391
|
ad3antrrr |
|
618 |
599
|
sselda |
|
619 |
618
|
adantrr |
|
620 |
601 619
|
resubcld |
|
621 |
620
|
3adant2 |
|
622 |
621
|
ad3antrrr |
|
623 |
621 398
|
readdcld |
|
624 |
623
|
ad3antrrr |
|
625 |
268
|
adantr |
|
626 |
625
|
3ad2antl1 |
|
627 |
626
|
ad2antrr |
|
628 |
|
simpl3 |
|
629 |
628
|
ad2antrr |
|
630 |
|
simplr |
|
631 |
619
|
ad2antrr |
|
632 |
601
|
ad2antrr |
|
633 |
631 632
|
lenltd |
|
634 |
630 633
|
mpbid |
|
635 |
|
eqcom |
|
636 |
635
|
notbii |
|
637 |
636
|
biimpi |
|
638 |
637
|
adantl |
|
639 |
|
ioran |
|
640 |
634 638 639
|
sylanbrc |
|
641 |
632 631
|
leloed |
|
642 |
640 641
|
mtbird |
|
643 |
642
|
3adantll2 |
|
644 |
643
|
adantllr |
|
645 |
619
|
adantr |
|
646 |
645
|
3adantl2 |
|
647 |
646
|
ad2antrr |
|
648 |
601
|
adantr |
|
649 |
648
|
3adantl2 |
|
650 |
649
|
ad2antrr |
|
651 |
647 650
|
ltnled |
|
652 |
644 651
|
mpbird |
|
653 |
|
simp2l |
|
654 |
|
eleq1 |
|
655 |
654
|
anbi1d |
|
656 |
|
breq1 |
|
657 |
655 656
|
3anbi23d |
|
658 |
|
oveq2 |
|
659 |
658
|
breq2d |
|
660 |
657 659
|
imbi12d |
|
661 |
|
simp2r |
|
662 |
|
eleq1 |
|
663 |
662
|
anbi2d |
|
664 |
|
breq2 |
|
665 |
663 664
|
3anbi23d |
|
666 |
|
oveq1 |
|
667 |
666
|
breq2d |
|
668 |
665 667
|
imbi12d |
|
669 |
668 515
|
vtoclg |
|
670 |
661 669
|
mpcom |
|
671 |
660 670
|
vtoclg |
|
672 |
653 671
|
mpcom |
|
673 |
627 629 652 672
|
syl3anc |
|
674 |
395
|
ad2antlr |
|
675 |
293
|
ad2antrr |
|
676 |
|
simpr |
|
677 |
283
|
ad2antrr |
|
678 |
286
|
ad2antlr |
|
679 |
677 678
|
subge0d |
|
680 |
676 679
|
mpbird |
|
681 |
680
|
adantll |
|
682 |
352
|
rpge0d |
|
683 |
682
|
ad2antrr |
|
684 |
674 675 681 683
|
mulge0d |
|
685 |
684
|
3adantl3 |
|
686 |
621
|
adantr |
|
687 |
398
|
adantr |
|
688 |
686 687
|
addge01d |
|
689 |
685 688
|
mpbid |
|
690 |
689
|
ad2antrr |
|
691 |
617 622 624 673 690
|
letrd |
|
692 |
616 691
|
pm2.61dan |
|
693 |
372 378
|
eqtrd |
|
694 |
693
|
oveq1d |
|
695 |
365 369
|
subcld |
|
696 |
373 374
|
subcld |
|
697 |
696 375
|
mulcld |
|
698 |
695 697 610
|
addassd |
|
699 |
341 336 336 341
|
subadd4b |
|
700 |
699
|
adantl |
|
701 |
700
|
oveq1d |
|
702 |
696 609 375
|
adddird |
|
703 |
340
|
subidd |
|
704 |
703
|
adantl |
|
705 |
562
|
adantr |
|
706 |
704 705
|
oveq12d |
|
707 |
|
00id |
|
708 |
706 707
|
eqtrdi |
|
709 |
708
|
oveq1d |
|
710 |
709
|
adantl |
|
711 |
701 702 710
|
3eqtr3d |
|
712 |
711
|
oveq2d |
|
713 |
318
|
mul02d |
|
714 |
713
|
oveq2d |
|
715 |
364 368
|
subcld |
|
716 |
715
|
addid1d |
|
717 |
714 716
|
eqtrd |
|
718 |
717
|
adantr |
|
719 |
712 718
|
eqtrd |
|
720 |
694 698 719
|
3eqtrd |
|
721 |
720
|
3adant3 |
|
722 |
721
|
ad2antrr |
|
723 |
692 722
|
breqtrd |
|
724 |
|
simpll |
|
725 |
|
simpr |
|
726 |
601
|
3adant2 |
|
727 |
726
|
adantr |
|
728 |
619
|
3adant2 |
|
729 |
728
|
adantr |
|
730 |
727 729
|
ltnled |
|
731 |
725 730
|
mpbird |
|
732 |
731
|
adantlr |
|
733 |
535
|
3adant3 |
|
734 |
733
|
adantr |
|
735 |
600
|
3adant2 |
|
736 |
302
|
3ad2ant1 |
|
737 |
735 736
|
resubcld |
|
738 |
293
|
3ad2ant1 |
|
739 |
531
|
3ad2ant1 |
|
740 |
737 738 739
|
redivcld |
|
741 |
740
|
3adant3l |
|
742 |
741
|
3adant2l |
|
743 |
742
|
adantr |
|
744 |
618
|
3adant2 |
|
745 |
302
|
3ad2ant1 |
|
746 |
744 745
|
resubcld |
|
747 |
293
|
3ad2ant1 |
|
748 |
531
|
3ad2ant1 |
|
749 |
746 747 748
|
redivcld |
|
750 |
749
|
3adant3r |
|
751 |
750
|
3adant2r |
|
752 |
751
|
adantr |
|
753 |
284
|
3ad2ant2 |
|
754 |
753
|
adantr |
|
755 |
726
|
adantr |
|
756 |
302
|
3ad2ant1 |
|
757 |
756
|
adantr |
|
758 |
755 757
|
resubcld |
|
759 |
728
|
adantr |
|
760 |
759 757
|
resubcld |
|
761 |
352
|
3ad2ant1 |
|
762 |
761
|
adantr |
|
763 |
601
|
adantr |
|
764 |
619
|
adantr |
|
765 |
302
|
ad2antrr |
|
766 |
|
simpr |
|
767 |
763 764 765 766
|
ltsub1dd |
|
768 |
767
|
3adantl2 |
|
769 |
758 760 762 768
|
ltdiv1dd |
|
770 |
554 570
|
eqbrtrd |
|
771 |
770
|
3adant3 |
|
772 |
771
|
adantr |
|
773 |
743 752 754 769 772
|
lttrd |
|
774 |
734 773
|
eqbrtrd |
|
775 |
774
|
adantlr |
|
776 |
732 775
|
syldan |
|
777 |
391
|
adantr |
|
778 |
393
|
adantr |
|
779 |
623
|
adantr |
|
780 |
522
|
adantr |
|
781 |
|
peano2rem |
|
782 |
753 781
|
syl |
|
783 |
287
|
3ad2ant2 |
|
784 |
782 783
|
resubcld |
|
785 |
784 393
|
remulcld |
|
786 |
785
|
adantr |
|
787 |
753
|
adantr |
|
788 |
330
|
a1i |
|
789 |
787 788
|
resubcld |
|
790 |
286
|
ad2antlr |
|
791 |
790
|
3ad2antl2 |
|
792 |
789 791
|
resubcld |
|
793 |
682
|
adantr |
|
794 |
793
|
3ad2antl1 |
|
795 |
283
|
ad2antrr |
|
796 |
330
|
a1i |
|
797 |
795 796
|
resubcld |
|
798 |
|
simpr |
|
799 |
|
simplr |
|
800 |
|
simpll |
|
801 |
|
1zzd |
|
802 |
800 801
|
zsubcld |
|
803 |
|
zltlem1 |
|
804 |
799 802 803
|
syl2anc |
|
805 |
798 804
|
mpbid |
|
806 |
790 797 796 805
|
lesubd |
|
807 |
806
|
3ad2antl2 |
|
808 |
778 792 794 807
|
lemulge12d |
|
809 |
336 337 341
|
sub32d |
|
810 |
809
|
oveq1d |
|
811 |
810
|
adantl |
|
812 |
|
1cnd |
|
813 |
609 812 375
|
subdird |
|
814 |
319
|
oveq2d |
|
815 |
814
|
adantr |
|
816 |
811 813 815
|
3eqtrd |
|
817 |
816
|
3adant3 |
|
818 |
728 726
|
resubcld |
|
819 |
270 272 277 275
|
iccsuble |
|
820 |
819 4
|
breqtrrdi |
|
821 |
820
|
3adant2 |
|
822 |
818 393 398 821
|
lesub2dd |
|
823 |
817 822
|
eqbrtrd |
|
824 |
610
|
3adant3 |
|
825 |
728
|
recnd |
|
826 |
602
|
3adant2 |
|
827 |
824 825 826
|
subsub2d |
|
828 |
621
|
recnd |
|
829 |
824 828
|
addcomd |
|
830 |
827 829
|
eqtrd |
|
831 |
823 830
|
breqtrd |
|
832 |
831
|
adantr |
|
833 |
778 786 779 808 832
|
letrd |
|
834 |
777 778 779 780 833
|
letrd |
|
835 |
721
|
adantr |
|
836 |
834 835
|
breqtrd |
|
837 |
836
|
adantlr |
|
838 |
837
|
adantlr |
|
839 |
|
simplll |
|
840 |
|
simpll2 |
|
841 |
|
simplr |
|
842 |
|
simpr |
|
843 |
581 582 580 584
|
lesubd |
|
844 |
843
|
3adant3 |
|
845 |
|
simpr |
|
846 |
284 781
|
syl |
|
847 |
846
|
adantr |
|
848 |
286
|
ad2antlr |
|
849 |
847 848
|
lenltd |
|
850 |
845 849
|
mpbird |
|
851 |
850
|
3adant2 |
|
852 |
580
|
3adant3 |
|
853 |
846
|
3ad2ant1 |
|
854 |
852 853
|
letri3d |
|
855 |
844 851 854
|
mpbir2and |
|
856 |
840 841 842 855
|
syl3anc |
|
857 |
856
|
adantlr |
|
858 |
|
simpl1 |
|
859 |
|
simpl2l |
|
860 |
|
simpl3l |
|
861 |
|
oveq1 |
|
862 |
861
|
oveq2d |
|
863 |
862
|
eqcomd |
|
864 |
863
|
adantl |
|
865 |
|
simpl |
|
866 |
864 865
|
eqeltrd |
|
867 |
866
|
adantll |
|
868 |
867
|
3ad2antl3 |
|
869 |
860 868
|
jca |
|
870 |
|
id |
|
871 |
870
|
3adant3r |
|
872 |
744
|
adantr |
|
873 |
271
|
3ad2ant1 |
|
874 |
873
|
adantr |
|
875 |
269
|
adantr |
|
876 |
271
|
adantr |
|
877 |
|
elicc2 |
|
878 |
875 876 877
|
syl2anc |
|
879 |
276 878
|
mpbid |
|
880 |
879
|
simp3d |
|
881 |
880
|
3adant2 |
|
882 |
881
|
adantr |
|
883 |
|
nne |
|
884 |
540 370
|
pncand |
|
885 |
884
|
eqcomd |
|
886 |
885
|
adantr |
|
887 |
|
oveq1 |
|
888 |
887
|
eqcomd |
|
889 |
888
|
adantl |
|
890 |
4
|
oveq2i |
|
891 |
268 161
|
syl |
|
892 |
268 162
|
syl |
|
893 |
891 892
|
pncan3d |
|
894 |
890 893
|
eqtr2id |
|
895 |
894
|
oveq1d |
|
896 |
895
|
adantr |
|
897 |
891
|
adantr |
|
898 |
897 370 547
|
subsub3d |
|
899 |
550 547
|
mulsubfacd |
|
900 |
899
|
oveq2d |
|
901 |
896 898 900
|
3eqtr2d |
|
902 |
901
|
adantr |
|
903 |
886 889 902
|
3eqtrd |
|
904 |
903
|
3adantl3 |
|
905 |
904
|
adantlr |
|
906 |
|
oveq1 |
|
907 |
906
|
eqcomd |
|
908 |
907
|
ad2antlr |
|
909 |
364
|
ad2antrr |
|
910 |
|
1cnd |
|
911 |
550 910
|
subcld |
|
912 |
911 547
|
mulcld |
|
913 |
912
|
adantr |
|
914 |
909 913
|
pncand |
|
915 |
914
|
3adantl3 |
|
916 |
915
|
adantr |
|
917 |
905 908 916
|
3eqtrd |
|
918 |
883 917
|
sylan2b |
|
919 |
309 358
|
ltned |
|
920 |
919
|
neneqd |
|
921 |
920
|
3ad2ant1 |
|
922 |
921
|
ad2antrr |
|
923 |
918 922
|
condan |
|
924 |
872 874 882 923
|
leneltd |
|
925 |
871 924
|
sylan |
|
926 |
268
|
ad2antrr |
|
927 |
|
simplr |
|
928 |
926 8
|
syl |
|
929 |
|
simpr |
|
930 |
|
simp2l |
|
931 |
654
|
anbi1d |
|
932 |
|
breq1 |
|
933 |
931 932
|
3anbi23d |
|
934 |
|
oveq2 |
|
935 |
934
|
breq2d |
|
936 |
933 935
|
imbi12d |
|
937 |
|
simp2r |
|
938 |
403
|
anbi2d |
|
939 |
|
breq2 |
|
940 |
938 939
|
3anbi23d |
|
941 |
|
oveq1 |
|
942 |
941
|
breq2d |
|
943 |
940 942
|
imbi12d |
|
944 |
943 515
|
vtoclg |
|
945 |
937 944
|
mpcom |
|
946 |
936 945
|
vtoclg |
|
947 |
930 946
|
mpcom |
|
948 |
926 927 928 929 947
|
syl121anc |
|
949 |
948
|
adantlrr |
|
950 |
949
|
3adantl2 |
|
951 |
950
|
adantlr |
|
952 |
892
|
adantr |
|
953 |
599
|
sselda |
|
954 |
953
|
recnd |
|
955 |
952 954
|
npcand |
|
956 |
955
|
eqcomd |
|
957 |
956
|
oveq1d |
|
958 |
957
|
adantrl |
|
959 |
958
|
3adant2 |
|
960 |
959
|
adantr |
|
961 |
|
oveq2 |
|
962 |
961
|
oveq1d |
|
963 |
962
|
oveq1d |
|
964 |
963
|
adantl |
|
965 |
4
|
eqcomi |
|
966 |
965
|
oveq1i |
|
967 |
966
|
a1i |
|
968 |
318
|
adantr |
|
969 |
968 954
|
addcomd |
|
970 |
967 969
|
eqtrd |
|
971 |
970
|
oveq1d |
|
972 |
971
|
adantrl |
|
973 |
972
|
3adant2 |
|
974 |
973
|
adantr |
|
975 |
954
|
adantrl |
|
976 |
975
|
3adant2 |
|
977 |
976
|
adantr |
|
978 |
318
|
3ad2ant1 |
|
979 |
978
|
adantr |
|
980 |
618
|
adantrr |
|
981 |
980
|
recnd |
|
982 |
981
|
3adant2 |
|
983 |
982
|
adantr |
|
984 |
977 979 983
|
addsubd |
|
985 |
974 984
|
eqtrd |
|
986 |
960 964 985
|
3eqtrd |
|
987 |
986
|
adantr |
|
988 |
951 987
|
breqtrd |
|
989 |
925 988
|
mpdan |
|
990 |
|
simpl1 |
|
991 |
|
simpl3r |
|
992 |
|
simpr |
|
993 |
269
|
3ad2ant1 |
|
994 |
953
|
3adant3 |
|
995 |
273
|
sselda |
|
996 |
269
|
adantr |
|
997 |
271
|
adantr |
|
998 |
|
elicc2 |
|
999 |
996 997 998
|
syl2anc |
|
1000 |
995 999
|
mpbid |
|
1001 |
1000
|
simp2d |
|
1002 |
1001
|
3adant3 |
|
1003 |
|
neqne |
|
1004 |
1003
|
3ad2ant3 |
|
1005 |
993 994 1002 1004
|
leneltd |
|
1006 |
990 991 992 1005
|
syl3anc |
|
1007 |
390
|
3ad2ant1 |
|
1008 |
1007
|
adantr |
|
1009 |
953
|
adantrl |
|
1010 |
1009
|
3adant2 |
|
1011 |
269
|
3ad2ant1 |
|
1012 |
1010 1011
|
resubcld |
|
1013 |
1012
|
adantr |
|
1014 |
1009 980
|
resubcld |
|
1015 |
293
|
adantr |
|
1016 |
1014 1015
|
readdcld |
|
1017 |
1016
|
3adant2 |
|
1018 |
1017
|
adantr |
|
1019 |
268
|
adantr |
|
1020 |
1019
|
3ad2antl1 |
|
1021 |
1020 7
|
syl |
|
1022 |
|
simpl3r |
|
1023 |
|
simpr |
|
1024 |
|
simp2r |
|
1025 |
|
eleq1 |
|
1026 |
1025
|
anbi2d |
|
1027 |
|
breq2 |
|
1028 |
1026 1027
|
3anbi23d |
|
1029 |
|
oveq1 |
|
1030 |
1029
|
breq2d |
|
1031 |
1028 1030
|
imbi12d |
|
1032 |
1031 517
|
vtoclg |
|
1033 |
1024 1032
|
mpcom |
|
1034 |
1020 1021 1022 1023 1033
|
syl121anc |
|
1035 |
269
|
adantr |
|
1036 |
980 1035
|
resubcld |
|
1037 |
965 1015
|
eqeltrid |
|
1038 |
271
|
adantr |
|
1039 |
880
|
adantrr |
|
1040 |
980 1038 1035 1039
|
lesub1dd |
|
1041 |
1036 1037 1014 1040
|
leadd2dd |
|
1042 |
975 981
|
npcand |
|
1043 |
1042
|
eqcomd |
|
1044 |
1043
|
oveq1d |
|
1045 |
1014
|
recnd |
|
1046 |
891
|
adantr |
|
1047 |
1045 981 1046
|
addsubassd |
|
1048 |
1044 1047
|
eqtrd |
|
1049 |
4
|
oveq2i |
|
1050 |
1049
|
a1i |
|
1051 |
1041 1048 1050
|
3brtr4d |
|
1052 |
1051
|
3adant2 |
|
1053 |
1052
|
adantr |
|
1054 |
1008 1013 1018 1034 1053
|
letrd |
|
1055 |
1006 1054
|
syldan |
|
1056 |
989 1055
|
pm2.61dan |
|
1057 |
858 859 869 1056
|
syl3anc |
|
1058 |
720
|
eqcomd |
|
1059 |
1058
|
adantr |
|
1060 |
862
|
oveq1d |
|
1061 |
1060
|
adantl |
|
1062 |
|
oveq2 |
|
1063 |
1062
|
oveq1d |
|
1064 |
1063
|
adantl |
|
1065 |
|
1cnd |
|
1066 |
335 1065
|
nncand |
|
1067 |
1066
|
oveq1d |
|
1068 |
1067
|
ad2antlr |
|
1069 |
319
|
ad2antrr |
|
1070 |
1064 1068 1069
|
3eqtrd |
|
1071 |
1061 1070
|
oveq12d |
|
1072 |
1071
|
adantlrr |
|
1073 |
1059 1072
|
eqtr2d |
|
1074 |
1073
|
3adantl3 |
|
1075 |
1057 1074
|
breqtrd |
|
1076 |
839 857 1075
|
syl2anc |
|
1077 |
838 1076
|
pm2.61dan |
|
1078 |
724 776 732 1077
|
syl21anc |
|
1079 |
723 1078
|
pm2.61dan |
|
1080 |
387 1079
|
mpdan |
|
1081 |
309 302 358
|
ltled |
|
1082 |
309 302 1081
|
abssuble0d |
|
1083 |
1082
|
eqcomd |
|
1084 |
1083
|
3ad2ant1 |
|
1085 |
1080 1084
|
breqtrd |
|
1086 |
1085
|
3exp |
|
1087 |
1086
|
rexlimdvv |
|
1088 |
265 1087
|
mpd |
|
1089 |
18 1088
|
sylbir |
|
1090 |
264 1089
|
chvarvv |
|
1091 |
251 1090
|
chvarvv |
|
1092 |
231 237 238 1091
|
syl21anc |
|
1093 |
|
simpr |
|
1094 |
|
simpl3 |
|
1095 |
|
simpl1 |
|
1096 |
|
simpl2 |
|
1097 |
1095 1096
|
lttri2d |
|
1098 |
1094 1097
|
mpbid |
|
1099 |
1098
|
ord |
|
1100 |
1093 1099
|
mpd |
|
1101 |
1100
|
adantll |
|
1102 |
1101
|
adantlr |
|
1103 |
|
simplll |
|
1104 |
|
simplr |
|
1105 |
|
simpll |
|
1106 |
|
simpr |
|
1107 |
1104 1105 1106
|
3jca |
|
1108 |
1107
|
adantll |
|
1109 |
1108
|
adantlr |
|
1110 |
|
oveq1 |
|
1111 |
1110
|
oveq2d |
|
1112 |
1111
|
eleq1d |
|
1113 |
1112
|
anbi1d |
|
1114 |
|
oveq1 |
|
1115 |
1114
|
oveq2d |
|
1116 |
1115
|
eleq1d |
|
1117 |
1116
|
anbi2d |
|
1118 |
1113 1117
|
cbvrex2vw |
|
1119 |
|
oveq1 |
|
1120 |
1119
|
oveq2d |
|
1121 |
1120
|
eleq1d |
|
1122 |
1121
|
anbi1d |
|
1123 |
|
oveq1 |
|
1124 |
1123
|
oveq2d |
|
1125 |
1124
|
eleq1d |
|
1126 |
1125
|
anbi2d |
|
1127 |
1122 1126
|
cbvrex2vw |
|
1128 |
|
rexcom |
|
1129 |
|
ancom |
|
1130 |
1129
|
2rexbii |
|
1131 |
1127 1128 1130
|
3bitri |
|
1132 |
1118 1131
|
sylbb |
|
1133 |
1132
|
ad2antlr |
|
1134 |
|
eleq1 |
|
1135 |
|
breq2 |
|
1136 |
1134 1135
|
3anbi23d |
|
1137 |
1136
|
anbi2d |
|
1138 |
|
oveq1 |
|
1139 |
1138
|
eleq1d |
|
1140 |
1139
|
anbi2d |
|
1141 |
1140
|
2rexbidv |
|
1142 |
1137 1141
|
anbi12d |
|
1143 |
|
oveq2 |
|
1144 |
1143
|
fveq2d |
|
1145 |
1144
|
breq2d |
|
1146 |
1142 1145
|
imbi12d |
|
1147 |
|
eleq1 |
|
1148 |
|
breq1 |
|
1149 |
1147 1148
|
3anbi13d |
|
1150 |
1149
|
anbi2d |
|
1151 |
|
oveq1 |
|
1152 |
1151
|
eleq1d |
|
1153 |
1152
|
anbi1d |
|
1154 |
1153
|
2rexbidv |
|
1155 |
1150 1154
|
anbi12d |
|
1156 |
|
oveq1 |
|
1157 |
1156
|
fveq2d |
|
1158 |
1157
|
breq2d |
|
1159 |
1155 1158
|
imbi12d |
|
1160 |
1159 1089
|
chvarvv |
|
1161 |
1146 1160
|
chvarvv |
|
1162 |
1103 1109 1133 1161
|
syl21anc |
|
1163 |
|
recn |
|
1164 |
1163
|
adantl |
|
1165 |
|
recn |
|
1166 |
1165
|
adantr |
|
1167 |
1164 1166
|
abssubd |
|
1168 |
1167
|
adantl |
|
1169 |
1168
|
ad2antrr |
|
1170 |
1162 1169
|
breqtrd |
|
1171 |
1170
|
ex |
|
1172 |
1171
|
3adantlr3 |
|
1173 |
1172
|
adantr |
|
1174 |
1102 1173
|
mpd |
|
1175 |
1092 1174
|
pm2.61dan |
|
1176 |
198 206 230 1175
|
syl21anc |
|
1177 |
389
|
ad2antrr |
|
1178 |
200 203
|
resubcld |
|
1179 |
1178
|
recnd |
|
1180 |
1179
|
abscld |
|
1181 |
1180
|
adantr |
|
1182 |
1177 1181
|
lenltd |
|
1183 |
1176 1182
|
mpbid |
|
1184 |
|
nan |
|
1185 |
1183 1184
|
mpbir |
|
1186 |
1185
|
ralrimivva |
|
1187 |
|
ralnex2 |
|
1188 |
1186 1187
|
sylib |
|
1189 |
1188
|
ad2antrr |
|
1190 |
197 1189
|
pm2.65da |
|
1191 |
1190
|
intnanrd |
|
1192 |
|
elin |
|
1193 |
1191 1192
|
sylnibr |
|
1194 |
26
|
a1i |
|
1195 |
27
|
adantr |
|
1196 |
24
|
adantr |
|
1197 |
30 16
|
restlp |
|
1198 |
1194 1195 1196 1197
|
syl3anc |
|
1199 |
1193 1198
|
neleqtrrd |
|
1200 |
1199
|
nrexdv |
|
1201 |
1200
|
adantr |
|
1202 |
41 1201
|
condan |
|