Metamath Proof Explorer


Theorem fourierdlem42

Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem42.b φ B
fourierdlem42.c φ C
fourierdlem42.bc φ B < C
fourierdlem42.t T = C B
fourierdlem42.a φ A B C
fourierdlem42.af φ A Fin
fourierdlem42.ba φ B A
fourierdlem42.ca φ C A
fourierdlem42.d D = abs
fourierdlem42.i I = A × A I
fourierdlem42.r R = ran D I
fourierdlem42.e E = sup R <
fourierdlem42.x φ X
fourierdlem42.y φ Y
fourierdlem42.j J = topGen ran .
fourierdlem42.k K = J 𝑡 X Y
fourierdlem42.h H = x X Y | k x + k T A
fourierdlem42.15 ψ φ a b a < b j k a + j T A b + k T A
Assertion fourierdlem42 φ H Fin

Proof

Step Hyp Ref Expression
1 fourierdlem42.b φ B
2 fourierdlem42.c φ C
3 fourierdlem42.bc φ B < C
4 fourierdlem42.t T = C B
5 fourierdlem42.a φ A B C
6 fourierdlem42.af φ A Fin
7 fourierdlem42.ba φ B A
8 fourierdlem42.ca φ C A
9 fourierdlem42.d D = abs
10 fourierdlem42.i I = A × A I
11 fourierdlem42.r R = ran D I
12 fourierdlem42.e E = sup R <
13 fourierdlem42.x φ X
14 fourierdlem42.y φ Y
15 fourierdlem42.j J = topGen ran .
16 fourierdlem42.k K = J 𝑡 X Y
17 fourierdlem42.h H = x X Y | k x + k T A
18 fourierdlem42.15 ψ φ a b a < b j k a + j T A b + k T A
19 15 16 icccmp X Y K Comp
20 13 14 19 syl2anc φ K Comp
21 20 adantr φ ¬ H Fin K Comp
22 ssrab2 x X Y | k x + k T A X Y
23 22 a1i φ x X Y | k x + k T A X Y
24 17 23 eqsstrid φ H X Y
25 retop topGen ran . Top
26 15 25 eqeltri J Top
27 13 14 iccssred φ X Y
28 uniretop = topGen ran .
29 15 unieqi J = topGen ran .
30 28 29 eqtr4i = J
31 30 restuni J Top X Y X Y = J 𝑡 X Y
32 26 27 31 sylancr φ X Y = J 𝑡 X Y
33 16 unieqi K = J 𝑡 X Y
34 33 eqcomi J 𝑡 X Y = K
35 32 34 eqtrdi φ X Y = K
36 24 35 sseqtrd φ H K
37 36 adantr φ ¬ H Fin H K
38 simpr φ ¬ H Fin ¬ H Fin
39 eqid K = K
40 39 bwth K Comp H K ¬ H Fin x K x limPt K H
41 21 37 38 40 syl3anc φ ¬ H Fin x K x limPt K H
42 24 27 sstrd φ H
43 42 ad2antrr φ x K x limPt J H H
44 ne0i x limPt J H limPt J H
45 44 adantl φ x K x limPt J H limPt J H
46 absf abs :
47 ffn abs : abs Fn
48 46 47 ax-mp abs Fn
49 subf : ×
50 ffn : × Fn ×
51 49 50 ax-mp Fn ×
52 frn : × ran
53 49 52 ax-mp ran
54 fnco abs Fn Fn × ran abs Fn ×
55 48 51 53 54 mp3an abs Fn ×
56 9 fneq1i D Fn × abs Fn ×
57 55 56 mpbir D Fn ×
58 1 2 iccssred φ B C
59 ax-resscn
60 58 59 sstrdi φ B C
61 5 60 sstrd φ A
62 xpss12 A A A × A ×
63 61 61 62 syl2anc φ A × A ×
64 63 ssdifssd φ A × A I ×
65 10 64 eqsstrid φ I ×
66 fnssres D Fn × I × D I Fn I
67 57 65 66 sylancr φ D I Fn I
68 fvres x I D I x = D x
69 68 adantl φ x I D I x = D x
70 9 fveq1i D x = abs x
71 70 a1i φ x I D x = abs x
72 ffun : × Fun
73 49 72 ax-mp Fun
74 65 sselda φ x I x ×
75 49 fdmi dom = ×
76 74 75 eleqtrrdi φ x I x dom
77 fvco Fun x dom abs x = x
78 73 76 77 sylancr φ x I abs x = x
79 69 71 78 3eqtrd φ x I D I x = x
80 49 a1i φ x I : ×
81 80 74 ffvelrnd φ x I x
82 81 abscld φ x I x
83 79 82 eqeltrd φ x I D I x
84 elxp2 x × y z x = y z
85 74 84 sylib φ x I y z x = y z
86 fveq2 x = y z x = y z
87 86 3ad2ant3 φ x I y z x = y z x = y z
88 df-ov y z = y z
89 simp1l φ x I y z x = y z φ
90 simpr x I x = y z x = y z
91 simpl x I x = y z x I
92 90 91 eqeltrrd x I x = y z y z I
93 92 adantll φ x I x = y z y z I
94 93 3adant2 φ x I y z x = y z y z I
95 61 adantr φ y z I A
96 10 eleq2i y z I y z A × A I
97 eldif y z A × A I y z A × A ¬ y z I
98 96 97 sylbb y z I y z A × A ¬ y z I
99 98 simpld y z I y z A × A
100 opelxp y z A × A y A z A
101 99 100 sylib y z I y A z A
102 101 adantl φ y z I y A z A
103 102 simpld φ y z I y A
104 95 103 sseldd φ y z I y
105 102 simprd φ y z I z A
106 95 105 sseldd φ y z I z
107 98 simprd y z I ¬ y z I
108 df-br y I z y z I
109 107 108 sylnibr y z I ¬ y I z
110 vex z V
111 110 ideq y I z y = z
112 109 111 sylnib y z I ¬ y = z
113 112 neqned y z I y z
114 113 adantl φ y z I y z
115 104 106 114 subne0d φ y z I y z 0
116 89 94 115 syl2anc φ x I y z x = y z y z 0
117 88 116 eqnetrrid φ x I y z x = y z y z 0
118 87 117 eqnetrd φ x I y z x = y z x 0
119 118 3exp φ x I y z x = y z x 0
120 119 rexlimdvv φ x I y z x = y z x 0
121 85 120 mpd φ x I x 0
122 absgt0 x x 0 0 < x
123 81 122 syl φ x I x 0 0 < x
124 121 123 mpbid φ x I 0 < x
125 79 eqcomd φ x I x = D I x
126 124 125 breqtrd φ x I 0 < D I x
127 83 126 elrpd φ x I D I x +
128 127 ralrimiva φ x I D I x +
129 fnfvrnss D I Fn I x I D I x + ran D I +
130 67 128 129 syl2anc φ ran D I +
131 11 130 eqsstrid φ R +
132 ltso < Or
133 132 a1i φ < Or
134 xpfi A Fin A Fin A × A Fin
135 6 6 134 syl2anc φ A × A Fin
136 diffi A × A Fin A × A I Fin
137 135 136 syl φ A × A I Fin
138 10 137 eqeltrid φ I Fin
139 fnfi D I Fn I I Fin D I Fin
140 67 138 139 syl2anc φ D I Fin
141 rnfi D I Fin ran D I Fin
142 140 141 syl φ ran D I Fin
143 11 142 eqeltrid φ R Fin
144 11 a1i φ R = ran D I
145 9 a1i φ D = abs
146 145 reseq1d φ D I = abs I
147 146 fveq1d φ D I B C = abs I B C
148 opelxp B C A × A B A C A
149 7 8 148 sylanbrc φ B C A × A
150 1 3 ltned φ B C
151 150 neneqd φ ¬ B = C
152 ideqg C A B I C B = C
153 8 152 syl φ B I C B = C
154 151 153 mtbird φ ¬ B I C
155 df-br B I C B C I
156 154 155 sylnib φ ¬ B C I
157 149 156 eldifd φ B C A × A I
158 157 10 eleqtrrdi φ B C I
159 fvres B C I abs I B C = abs B C
160 158 159 syl φ abs I B C = abs B C
161 1 recnd φ B
162 2 recnd φ C
163 opelxp B C × B C
164 161 162 163 sylanbrc φ B C ×
165 164 75 eleqtrrdi φ B C dom
166 fvco Fun B C dom abs B C = B C
167 73 165 166 sylancr φ abs B C = B C
168 df-ov B C = B C
169 168 eqcomi B C = B C
170 169 a1i φ B C = B C
171 170 fveq2d φ B C = B C
172 167 171 eqtrd φ abs B C = B C
173 147 160 172 3eqtrrd φ B C = D I B C
174 fnfvelrn D I Fn I B C I D I B C ran D I
175 67 158 174 syl2anc φ D I B C ran D I
176 173 175 eqeltrd φ B C ran D I
177 ne0i B C ran D I ran D I
178 176 177 syl φ ran D I
179 144 178 eqnetrd φ R
180 resss D I D
181 rnss D I D ran D I ran D
182 180 181 ax-mp ran D I ran D
183 9 rneqi ran D = ran abs
184 rncoss ran abs ran abs
185 frn abs : ran abs
186 46 185 ax-mp ran abs
187 184 186 sstri ran abs
188 183 187 eqsstri ran D
189 182 188 sstri ran D I
190 11 189 eqsstri R
191 190 a1i φ R
192 fiinfcl < Or R Fin R R sup R < R
193 133 143 179 191 192 syl13anc φ sup R < R
194 131 193 sseldd φ sup R < +
195 12 194 eqeltrid φ E +
196 195 ad2antrr φ x K x limPt J H E +
197 15 43 45 196 lptre2pt φ x K x limPt J H y H z H y z y z < E
198 simpll φ y H z H y z φ
199 42 sselda φ y H y
200 199 adantrr φ y H z H y
201 200 adantr φ y H z H y z y
202 42 sselda φ z H z
203 202 adantrl φ y H z H z
204 203 adantr φ y H z H y z z
205 simpr φ y H z H y z y z
206 201 204 205 3jca φ y H z H y z y z y z
207 17 eleq2i y H y x X Y | k x + k T A
208 oveq1 x = y x + k T = y + k T
209 208 eleq1d x = y x + k T A y + k T A
210 209 rexbidv x = y k x + k T A k y + k T A
211 oveq1 k = j k T = j T
212 211 oveq2d k = j y + k T = y + j T
213 212 eleq1d k = j y + k T A y + j T A
214 213 cbvrexvw k y + k T A j y + j T A
215 210 214 bitrdi x = y k x + k T A j y + j T A
216 215 elrab y x X Y | k x + k T A y X Y j y + j T A
217 207 216 sylbb y H y X Y j y + j T A
218 217 simprd y H j y + j T A
219 218 adantr y H z H j y + j T A
220 17 eleq2i z H z x X Y | k x + k T A
221 oveq1 x = z x + k T = z + k T
222 221 eleq1d x = z x + k T A z + k T A
223 222 rexbidv x = z k x + k T A k z + k T A
224 223 elrab z x X Y | k x + k T A z X Y k z + k T A
225 220 224 sylbb z H z X Y k z + k T A
226 225 simprd z H k z + k T A
227 226 adantl y H z H k z + k T A
228 reeanv j k y + j T A z + k T A j y + j T A k z + k T A
229 219 227 228 sylanbrc y H z H j k y + j T A z + k T A
230 229 ad2antlr φ y H z H y z j k y + j T A z + k T A
231 simplll φ y z y z j k y + j T A z + k T A y < z φ
232 simpl1 y z y z y < z y
233 simpl2 y z y z y < z z
234 simpr y z y z y < z y < z
235 232 233 234 3jca y z y z y < z y z y < z
236 235 adantll φ y z y z y < z y z y < z
237 236 adantlr φ y z y z j k y + j T A z + k T A y < z y z y < z
238 simplr φ y z y z j k y + j T A z + k T A y < z j k y + j T A z + k T A
239 eleq1 b = z b z
240 breq2 b = z y < b y < z
241 239 240 3anbi23d b = z y b y < b y z y < z
242 241 anbi2d b = z φ y b y < b φ y z y < z
243 oveq1 b = z b + k T = z + k T
244 243 eleq1d b = z b + k T A z + k T A
245 244 anbi2d b = z y + j T A b + k T A y + j T A z + k T A
246 245 2rexbidv b = z j k y + j T A b + k T A j k y + j T A z + k T A
247 242 246 anbi12d b = z φ y b y < b j k y + j T A b + k T A φ y z y < z j k y + j T A z + k T A
248 oveq2 b = z y b = y z
249 248 fveq2d b = z y b = y z
250 249 breq2d b = z E y b E y z
251 247 250 imbi12d b = z φ y b y < b j k y + j T A b + k T A E y b φ y z y < z j k y + j T A z + k T A E y z
252 eleq1 a = y a y
253 breq1 a = y a < b y < b
254 252 253 3anbi13d a = y a b a < b y b y < b
255 254 anbi2d a = y φ a b a < b φ y b y < b
256 oveq1 a = y a + j T = y + j T
257 256 eleq1d a = y a + j T A y + j T A
258 257 anbi1d a = y a + j T A b + k T A y + j T A b + k T A
259 258 2rexbidv a = y j k a + j T A b + k T A j k y + j T A b + k T A
260 255 259 anbi12d a = y φ a b a < b j k a + j T A b + k T A φ y b y < b j k y + j T A b + k T A
261 oveq1 a = y a b = y b
262 261 fveq2d a = y a b = y b
263 262 breq2d a = y E a b E y b
264 260 263 imbi12d a = y φ a b a < b j k a + j T A b + k T A E a b φ y b y < b j k y + j T A b + k T A E y b
265 18 simprbi ψ j k a + j T A b + k T A
266 18 biimpi ψ φ a b a < b j k a + j T A b + k T A
267 266 simpld ψ φ a b a < b
268 267 simpld ψ φ
269 268 1 syl ψ B
270 269 adantr ψ a + j T A b + k T A B
271 268 2 syl ψ C
272 271 adantr ψ a + j T A b + k T A C
273 268 5 syl ψ A B C
274 273 sselda ψ b + k T A b + k T B C
275 274 adantrl ψ a + j T A b + k T A b + k T B C
276 273 sselda ψ a + j T A a + j T B C
277 276 adantrr ψ a + j T A b + k T A a + j T B C
278 270 272 275 277 iccsuble ψ a + j T A b + k T A b + k T - a + j T C B
279 278 4 breqtrrdi ψ a + j T A b + k T A b + k T - a + j T T
280 279 3adant2 ψ j k a + j T A b + k T A b + k T - a + j T T
281 280 adantr ψ j k a + j T A b + k T A ¬ k j b + k T - a + j T T
282 simpr ψ j k ¬ k j ¬ k j
283 zre j j
284 283 adantr j k j
285 284 ad2antlr ψ j k ¬ k j j
286 zre k k
287 286 adantl j k k
288 287 ad2antlr ψ j k ¬ k j k
289 285 288 ltnled ψ j k ¬ k j j < k ¬ k j
290 282 289 mpbird ψ j k ¬ k j j < k
291 2 1 resubcld φ C B
292 4 291 eqeltrid φ T
293 268 292 syl ψ T
294 293 ad2antrr ψ j k j < k T
295 287 adantl ψ j k k
296 284 adantl ψ j k j
297 295 296 resubcld ψ j k k j
298 293 adantr ψ j k T
299 297 298 remulcld ψ j k k j T
300 299 adantr ψ j k j < k k j T
301 267 simprd ψ a b a < b
302 301 simp2d ψ b
303 302 adantr ψ j k b
304 286 adantl ψ k k
305 293 adantr ψ k T
306 304 305 remulcld ψ k k T
307 306 adantrl ψ j k k T
308 303 307 readdcld ψ j k b + k T
309 301 simp1d ψ a
310 309 adantr ψ j k a
311 283 adantl ψ j j
312 293 adantr ψ j T
313 311 312 remulcld ψ j j T
314 313 adantrr ψ j k j T
315 310 314 readdcld ψ j k a + j T
316 308 315 resubcld ψ j k b + k T - a + j T
317 316 adantr ψ j k j < k b + k T - a + j T
318 293 recnd ψ T
319 318 mulid2d ψ 1 T = T
320 319 eqcomd ψ T = 1 T
321 320 ad2antrr ψ j k j < k T = 1 T
322 simpr ψ j k j < k j < k
323 zltlem1 j k j < k j k 1
324 323 ad2antlr ψ j k j < k j < k j k 1
325 322 324 mpbid ψ j k j < k j k 1
326 284 ad2antlr ψ j k j k 1 j
327 peano2rem k k 1
328 295 327 syl ψ j k k 1
329 328 adantr ψ j k j k 1 k 1
330 1re 1
331 resubcl 1 j 1 j
332 330 326 331 sylancr ψ j k j k 1 1 j
333 simpr ψ j k j k 1 j k 1
334 326 329 332 333 leadd1dd ψ j k j k 1 j + 1 - j k 1 + 1 - j
335 zcn j j
336 335 adantr j k j
337 1cnd j k 1
338 336 337 pncan3d j k j + 1 - j = 1
339 338 ad2antlr ψ j k j k 1 j + 1 - j = 1
340 zcn k k
341 340 adantl j k k
342 341 337 336 npncand j k k 1 + 1 - j = k j
343 342 ad2antlr ψ j k j k 1 k 1 + 1 - j = k j
344 334 339 343 3brtr3d ψ j k j k 1 1 k j
345 325 344 syldan ψ j k j < k 1 k j
346 330 a1i ψ j k j < k 1
347 297 adantr ψ j k j < k k j
348 1 2 posdifd φ B < C 0 < C B
349 3 348 mpbid φ 0 < C B
350 349 4 breqtrrdi φ 0 < T
351 292 350 elrpd φ T +
352 268 351 syl ψ T +
353 352 ad2antrr ψ j k j < k T +
354 346 347 353 lemul1d ψ j k j < k 1 k j 1 T k j T
355 345 354 mpbid ψ j k j < k 1 T k j T
356 321 355 eqbrtrd ψ j k j < k T k j T
357 302 309 resubcld ψ b a
358 301 simp3d ψ a < b
359 309 302 posdifd ψ a < b 0 < b a
360 358 359 mpbid ψ 0 < b a
361 357 360 elrpd ψ b a +
362 361 adantr ψ j k b a +
363 299 362 ltaddrp2d ψ j k k j T < b - a + k j T
364 302 recnd ψ b
365 364 adantr ψ j k b
366 306 recnd ψ k k T
367 366 adantrl ψ j k k T
368 309 recnd ψ a
369 368 adantr ψ j k a
370 313 recnd ψ j j T
371 370 adantrr ψ j k j T
372 365 367 369 371 addsub4d ψ j k b + k T - a + j T = b a + k T - j T
373 340 ad2antll ψ j k k
374 335 ad2antrl ψ j k j
375 318 adantr ψ j k T
376 373 374 375 subdird ψ j k k j T = k T j T
377 376 eqcomd ψ j k k T j T = k j T
378 377 oveq2d ψ j k b a + k T - j T = b - a + k j T
379 372 378 eqtr2d ψ j k b - a + k j T = b + k T - a + j T
380 363 379 breqtrd ψ j k k j T < b + k T - a + j T
381 380 adantr ψ j k j < k k j T < b + k T - a + j T
382 294 300 317 356 381 lelttrd ψ j k j < k T < b + k T - a + j T
383 294 317 ltnled ψ j k j < k T < b + k T - a + j T ¬ b + k T - a + j T T
384 382 383 mpbid ψ j k j < k ¬ b + k T - a + j T T
385 290 384 syldan ψ j k ¬ k j ¬ b + k T - a + j T T
386 385 3adantl3 ψ j k a + j T A b + k T A ¬ k j ¬ b + k T - a + j T T
387 281 386 condan ψ j k a + j T A b + k T A k j
388 190 193 sselid φ sup R <
389 12 388 eqeltrid φ E
390 268 389 syl ψ E
391 390 3ad2ant1 ψ j k a + j T A b + k T A E
392 391 ad2antrr ψ j k a + j T A b + k T A k j a + j T = b + k T E
393 293 3ad2ant1 ψ j k a + j T A b + k T A T
394 393 ad2antrr ψ j k a + j T A b + k T A k j a + j T = b + k T T
395 284 287 resubcld j k j k
396 395 adantl ψ j k j k
397 396 298 remulcld ψ j k j k T
398 397 3adant3 ψ j k a + j T A b + k T A j k T
399 398 ad2antrr ψ j k a + j T A b + k T A k j a + j T = b + k T j k T
400 id φ φ
401 7 8 jca φ B A C A
402 400 401 3 3jca φ φ B A C A B < C
403 eleq1 d = C d A C A
404 403 anbi2d d = C B A d A B A C A
405 breq2 d = C B < d B < C
406 404 405 3anbi23d d = C φ B A d A B < d φ B A C A B < C
407 oveq1 d = C d B = C B
408 407 breq2d d = C E d B E C B
409 406 408 imbi12d d = C φ B A d A B < d E d B φ B A C A B < C E C B
410 simp2l φ B A d A B < d B A
411 eleq1 c = B c A B A
412 411 anbi1d c = B c A d A B A d A
413 breq1 c = B c < d B < d
414 412 413 3anbi23d c = B φ c A d A c < d φ B A d A B < d
415 oveq2 c = B d c = d B
416 415 breq2d c = B E d c E d B
417 414 416 imbi12d c = B φ c A d A c < d E d c φ B A d A B < d E d B
418 190 a1i φ c A d A c < d R
419 0re 0
420 11 eleq2i y R y ran D I
421 420 biimpi y R y ran D I
422 421 adantl φ y R y ran D I
423 67 adantr φ y R D I Fn I
424 fvelrnb D I Fn I y ran D I x I D I x = y
425 423 424 syl φ y R y ran D I x I D I x = y
426 422 425 mpbid φ y R x I D I x = y
427 127 rpge0d φ x I 0 D I x
428 427 3adant3 φ x I D I x = y 0 D I x
429 simp3 φ x I D I x = y D I x = y
430 428 429 breqtrd φ x I D I x = y 0 y
431 430 3exp φ x I D I x = y 0 y
432 431 adantr φ y R x I D I x = y 0 y
433 432 rexlimdv φ y R x I D I x = y 0 y
434 426 433 mpd φ y R 0 y
435 434 ralrimiva φ y R 0 y
436 breq1 x = 0 x y 0 y
437 436 ralbidv x = 0 y R x y y R 0 y
438 437 rspcev 0 y R 0 y x y R x y
439 419 435 438 sylancr φ x y R x y
440 439 3ad2ant1 φ c A d A c < d x y R x y
441 pm3.22 c A d A d A c A
442 opelxp d c A × A d A c A
443 441 442 sylibr c A d A d c A × A
444 443 3ad2ant2 φ c A d A c < d d c A × A
445 5 58 sstrd φ A
446 445 sselda φ c A c
447 446 adantrr φ c A d A c
448 447 3adant3 φ c A d A c < d c
449 simp3 φ c A d A c < d c < d
450 448 449 gtned φ c A d A c < d d c
451 450 neneqd φ c A d A c < d ¬ d = c
452 df-br d I c d c I
453 vex c V
454 453 ideq d I c d = c
455 452 454 bitr3i d c I d = c
456 451 455 sylnibr φ c A d A c < d ¬ d c I
457 444 456 eldifd φ c A d A c < d d c A × A I
458 457 10 eleqtrrdi φ c A d A c < d d c I
459 448 449 ltned φ c A d A c < d c d
460 146 3ad2ant1 φ c A d A c d D I = abs I
461 460 fveq1d φ c A d A c d D I d c = abs I d c
462 443 3ad2ant2 φ c A d A c d d c A × A
463 necom c d d c
464 463 biimpi c d d c
465 464 neneqd c d ¬ d = c
466 465 3ad2ant3 φ c A d A c d ¬ d = c
467 466 455 sylnibr φ c A d A c d ¬ d c I
468 462 467 eldifd φ c A d A c d d c A × A I
469 468 10 eleqtrrdi φ c A d A c d d c I
470 fvres d c I abs I d c = abs d c
471 469 470 syl φ c A d A c d abs I d c = abs d c
472 simp1 φ c A d A c d φ
473 472 469 jca φ c A d A c d φ d c I
474 eleq1 x = d c x I d c I
475 474 anbi2d x = d c φ x I φ d c I
476 eleq1 x = d c x dom d c dom
477 475 476 imbi12d x = d c φ x I x dom φ d c I d c dom
478 477 76 vtoclg d c I φ d c I d c dom
479 469 473 478 sylc φ c A d A c d d c dom
480 fvco Fun d c dom abs d c = d c
481 73 479 480 sylancr φ c A d A c d abs d c = d c
482 df-ov d c = d c
483 482 eqcomi d c = d c
484 483 fveq2i d c = d c
485 481 484 eqtrdi φ c A d A c d abs d c = d c
486 461 471 485 3eqtrd φ c A d A c d D I d c = d c
487 459 486 syld3an3 φ c A d A c < d D I d c = d c
488 445 sselda φ d A d
489 488 adantrl φ c A d A d
490 489 3adant3 φ c A d A c < d d
491 448 490 449 ltled φ c A d A c < d c d
492 448 490 491 abssubge0d φ c A d A c < d d c = d c
493 487 492 eqtrd φ c A d A c < d D I d c = d c
494 fveq2 x = d c D I x = D I d c
495 494 eqeq1d x = d c D I x = d c D I d c = d c
496 495 rspcev d c I D I d c = d c x I D I x = d c
497 458 493 496 syl2anc φ c A d A c < d x I D I x = d c
498 489 447 resubcld φ c A d A d c
499 elex d c d c V
500 498 499 syl φ c A d A d c V
501 500 3adant3 φ c A d A c < d d c V
502 simp1 φ c A d A c < d φ
503 eleq1 y = d c y ran D I d c ran D I
504 eqeq2 y = d c D I x = y D I x = d c
505 504 rexbidv y = d c x I D I x = y x I D I x = d c
506 503 505 bibi12d y = d c y ran D I x I D I x = y d c ran D I x I D I x = d c
507 506 imbi2d y = d c φ y ran D I x I D I x = y φ d c ran D I x I D I x = d c
508 67 424 syl φ y ran D I x I D I x = y
509 507 508 vtoclg d c V φ d c ran D I x I D I x = d c
510 501 502 509 sylc φ c A d A c < d d c ran D I x I D I x = d c
511 497 510 mpbird φ c A d A c < d d c ran D I
512 511 11 eleqtrrdi φ c A d A c < d d c R
513 infrelb R x y R x y d c R sup R < d c
514 418 440 512 513 syl3anc φ c A d A c < d sup R < d c
515 12 514 eqbrtrid φ c A d A c < d E d c
516 417 515 vtoclg B A φ B A d A B < d E d B
517 410 516 mpcom φ B A d A B < d E d B
518 409 517 vtoclg C A φ B A C A B < C E C B
519 8 402 518 sylc φ E C B
520 519 4 breqtrrdi φ E T
521 268 520 syl ψ E T
522 521 3ad2ant1 ψ j k a + j T A b + k T A E T
523 522 ad2antrr ψ j k a + j T A b + k T A k j a + j T = b + k T E T
524 364 adantr ψ k b
525 524 366 pncan2d ψ k b + k T - b = k T
526 525 oveq1d ψ k b + k T - b T = k T T
527 340 adantl ψ k k
528 318 adantr ψ k T
529 419 a1i φ 0
530 529 350 gtned φ T 0
531 268 530 syl ψ T 0
532 531 adantr ψ k T 0
533 527 528 532 divcan4d ψ k k T T = k
534 526 533 eqtr2d ψ k k = b + k T - b T
535 534 adantrl ψ j k k = b + k T - b T
536 535 adantr ψ j k a + j T = b + k T k = b + k T - b T
537 oveq1 a + j T = b + k T a + j T - b = b + k T - b
538 537 oveq1d a + j T = b + k T a + j T - b T = b + k T - b T
539 538 adantl ψ j k a + j T = b + k T a + j T - b T = b + k T - b T
540 368 adantr ψ j a
541 364 adantr ψ j b
542 540 370 541 addsubd ψ j a + j T - b = a - b + j T
543 540 541 subcld ψ j a b
544 543 370 addcomd ψ j a - b + j T = j T + a - b
545 542 544 eqtrd ψ j a + j T - b = j T + a - b
546 545 oveq1d ψ j a + j T - b T = j T + a - b T
547 318 adantr ψ j T
548 531 adantr ψ j T 0
549 370 543 547 548 divdird ψ j j T + a - b T = j T T + a b T
550 335 adantl ψ j j
551 550 547 548 divcan4d ψ j j T T = j
552 551 oveq1d ψ j j T T + a b T = j + a b T
553 546 549 552 3eqtrd ψ j a + j T - b T = j + a b T
554 553 adantrr ψ j k a + j T - b T = j + a b T
555 554 adantr ψ j k a + j T = b + k T a + j T - b T = j + a b T
556 536 539 555 3eqtr2d ψ j k a + j T = b + k T k = j + a b T
557 309 302 resubcld ψ a b
558 309 302 sublt0d ψ a b < 0 a < b
559 358 558 mpbird ψ a b < 0
560 557 352 559 divlt0gt0d ψ a b T < 0
561 560 adantr ψ j a b T < 0
562 335 subidd j j j = 0
563 562 eqcomd j 0 = j j
564 563 adantl ψ j 0 = j j
565 561 564 breqtrd ψ j a b T < j j
566 557 293 531 redivcld ψ a b T
567 566 adantr ψ j a b T
568 311 567 311 ltaddsub2d ψ j j + a b T < j a b T < j j
569 565 568 mpbird ψ j j + a b T < j
570 569 adantrr ψ j k j + a b T < j
571 570 adantr ψ j k a + j T = b + k T j + a b T < j
572 556 571 eqbrtrd ψ j k a + j T = b + k T k < j
573 320 ad2antrr ψ j k k < j T = 1 T
574 simpr j k k < j k < j
575 simplr j k k < j k
576 simpll j k k < j j
577 zltp1le k j k < j k + 1 j
578 575 576 577 syl2anc j k k < j k < j k + 1 j
579 574 578 mpbid j k k < j k + 1 j
580 286 ad2antlr j k k < j k
581 330 a1i j k k < j 1
582 283 ad2antrr j k k < j j
583 580 581 582 leaddsub2d j k k < j k + 1 j 1 j k
584 579 583 mpbid j k k < j 1 j k
585 584 adantll ψ j k k < j 1 j k
586 330 a1i ψ j k k < j 1
587 395 ad2antlr ψ j k k < j j k
588 352 ad2antrr ψ j k k < j T +
589 586 587 588 lemul1d ψ j k k < j 1 j k 1 T j k T
590 585 589 mpbid ψ j k k < j 1 T j k T
591 573 590 eqbrtrd ψ j k k < j T j k T
592 572 591 syldan ψ j k a + j T = b + k T T j k T
593 592 adantlr ψ j k k j a + j T = b + k T T j k T
594 593 3adantll3 ψ j k a + j T A b + k T A k j a + j T = b + k T T j k T
595 392 394 399 523 594 letrd ψ j k a + j T A b + k T A k j a + j T = b + k T E j k T
596 oveq2 a + j T = b + k T b + k T - a + j T = b + k T - b + k T
597 596 oveq1d a + j T = b + k T b + k T - a + j T + j k T = b + k T - b + k T + j k T
598 597 adantl ψ a + j T A b + k T A a + j T = b + k T b + k T - a + j T + j k T = b + k T - b + k T + j k T
599 268 445 syl ψ A
600 599 sselda ψ b + k T A b + k T
601 600 adantrl ψ a + j T A b + k T A b + k T
602 601 recnd ψ a + j T A b + k T A b + k T
603 602 subidd ψ a + j T A b + k T A b + k T - b + k T = 0
604 603 oveq1d ψ a + j T A b + k T A b + k T - b + k T + j k T = 0 + j k T
605 604 adantr ψ a + j T A b + k T A a + j T = b + k T b + k T - b + k T + j k T = 0 + j k T
606 598 605 eqtrd ψ a + j T A b + k T A a + j T = b + k T b + k T - a + j T + j k T = 0 + j k T
607 606 3adantl2 ψ j k a + j T A b + k T A a + j T = b + k T b + k T - a + j T + j k T = 0 + j k T
608 607 adantlr ψ j k a + j T A b + k T A k j a + j T = b + k T b + k T - a + j T + j k T = 0 + j k T
609 374 373 subcld ψ j k j k
610 609 375 mulcld ψ j k j k T
611 610 addid2d ψ j k 0 + j k T = j k T
612 611 3adant3 ψ j k a + j T A b + k T A 0 + j k T = j k T
613 612 ad2antrr ψ j k a + j T A b + k T A k j a + j T = b + k T 0 + j k T = j k T
614 608 613 eqtr2d ψ j k a + j T A b + k T A k j a + j T = b + k T j k T = b + k T - a + j T + j k T
615 595 614 breqtrd ψ j k a + j T A b + k T A k j a + j T = b + k T E b + k T - a + j T + j k T
616 615 adantlr ψ j k a + j T A b + k T A k j a + j T b + k T a + j T = b + k T E b + k T - a + j T + j k T
617 391 ad3antrrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T E
618 599 sselda ψ a + j T A a + j T
619 618 adantrr ψ a + j T A b + k T A a + j T
620 601 619 resubcld ψ a + j T A b + k T A b + k T - a + j T
621 620 3adant2 ψ j k a + j T A b + k T A b + k T - a + j T
622 621 ad3antrrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T b + k T - a + j T
623 621 398 readdcld ψ j k a + j T A b + k T A b + k T - a + j T + j k T
624 623 ad3antrrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T b + k T - a + j T + j k T
625 268 adantr ψ k j φ
626 625 3ad2antl1 ψ j k a + j T A b + k T A k j φ
627 626 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T φ
628 simpl3 ψ j k a + j T A b + k T A k j a + j T A b + k T A
629 628 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T a + j T A b + k T A
630 simplr ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T a + j T b + k T
631 619 ad2antrr ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T a + j T
632 601 ad2antrr ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T b + k T
633 631 632 lenltd ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T a + j T b + k T ¬ b + k T < a + j T
634 630 633 mpbid ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T ¬ b + k T < a + j T
635 eqcom a + j T = b + k T b + k T = a + j T
636 635 notbii ¬ a + j T = b + k T ¬ b + k T = a + j T
637 636 biimpi ¬ a + j T = b + k T ¬ b + k T = a + j T
638 637 adantl ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T ¬ b + k T = a + j T
639 ioran ¬ b + k T < a + j T b + k T = a + j T ¬ b + k T < a + j T ¬ b + k T = a + j T
640 634 638 639 sylanbrc ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T ¬ b + k T < a + j T b + k T = a + j T
641 632 631 leloed ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T b + k T a + j T b + k T < a + j T b + k T = a + j T
642 640 641 mtbird ψ a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T ¬ b + k T a + j T
643 642 3adantll2 ψ j k a + j T A b + k T A a + j T b + k T ¬ a + j T = b + k T ¬ b + k T a + j T
644 643 adantllr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T ¬ b + k T a + j T
645 619 adantr ψ a + j T A b + k T A k j a + j T
646 645 3adantl2 ψ j k a + j T A b + k T A k j a + j T
647 646 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T a + j T
648 601 adantr ψ a + j T A b + k T A k j b + k T
649 648 3adantl2 ψ j k a + j T A b + k T A k j b + k T
650 649 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T b + k T
651 647 650 ltnled ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T a + j T < b + k T ¬ b + k T a + j T
652 644 651 mpbird ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T a + j T < b + k T
653 simp2l φ a + j T A b + k T A a + j T < b + k T a + j T A
654 eleq1 c = a + j T c A a + j T A
655 654 anbi1d c = a + j T c A b + k T A a + j T A b + k T A
656 breq1 c = a + j T c < b + k T a + j T < b + k T
657 655 656 3anbi23d c = a + j T φ c A b + k T A c < b + k T φ a + j T A b + k T A a + j T < b + k T
658 oveq2 c = a + j T b + k T - c = b + k T - a + j T
659 658 breq2d c = a + j T E b + k T - c E b + k T - a + j T
660 657 659 imbi12d c = a + j T φ c A b + k T A c < b + k T E b + k T - c φ a + j T A b + k T A a + j T < b + k T E b + k T - a + j T
661 simp2r φ c A b + k T A c < b + k T b + k T A
662 eleq1 d = b + k T d A b + k T A
663 662 anbi2d d = b + k T c A d A c A b + k T A
664 breq2 d = b + k T c < d c < b + k T
665 663 664 3anbi23d d = b + k T φ c A d A c < d φ c A b + k T A c < b + k T
666 oveq1 d = b + k T d c = b + k T - c
667 666 breq2d d = b + k T E d c E b + k T - c
668 665 667 imbi12d d = b + k T φ c A d A c < d E d c φ c A b + k T A c < b + k T E b + k T - c
669 668 515 vtoclg b + k T A φ c A b + k T A c < b + k T E b + k T - c
670 661 669 mpcom φ c A b + k T A c < b + k T E b + k T - c
671 660 670 vtoclg a + j T A φ a + j T A b + k T A a + j T < b + k T E b + k T - a + j T
672 653 671 mpcom φ a + j T A b + k T A a + j T < b + k T E b + k T - a + j T
673 627 629 652 672 syl3anc ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T E b + k T - a + j T
674 395 ad2antlr ψ j k k j j k
675 293 ad2antrr ψ j k k j T
676 simpr j k k j k j
677 283 ad2antrr j k k j j
678 286 ad2antlr j k k j k
679 677 678 subge0d j k k j 0 j k k j
680 676 679 mpbird j k k j 0 j k
681 680 adantll ψ j k k j 0 j k
682 352 rpge0d ψ 0 T
683 682 ad2antrr ψ j k k j 0 T
684 674 675 681 683 mulge0d ψ j k k j 0 j k T
685 684 3adantl3 ψ j k a + j T A b + k T A k j 0 j k T
686 621 adantr ψ j k a + j T A b + k T A k j b + k T - a + j T
687 398 adantr ψ j k a + j T A b + k T A k j j k T
688 686 687 addge01d ψ j k a + j T A b + k T A k j 0 j k T b + k T - a + j T b + k T - a + j T + j k T
689 685 688 mpbid ψ j k a + j T A b + k T A k j b + k T - a + j T b + k T - a + j T + j k T
690 689 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T b + k T - a + j T b + k T - a + j T + j k T
691 617 622 624 673 690 letrd ψ j k a + j T A b + k T A k j a + j T b + k T ¬ a + j T = b + k T E b + k T - a + j T + j k T
692 616 691 pm2.61dan ψ j k a + j T A b + k T A k j a + j T b + k T E b + k T - a + j T + j k T
693 372 378 eqtrd ψ j k b + k T - a + j T = b - a + k j T
694 693 oveq1d ψ j k b + k T - a + j T + j k T = b a + k j T + j k T
695 365 369 subcld ψ j k b a
696 373 374 subcld ψ j k k j
697 696 375 mulcld ψ j k k j T
698 695 697 610 addassd ψ j k b a + k j T + j k T = b a + k j T + j k T
699 341 336 336 341 subadd4b j k k j + j - k = k k + j - j
700 699 adantl ψ j k k j + j - k = k k + j - j
701 700 oveq1d ψ j k k j + j - k T = k k + j - j T
702 696 609 375 adddird ψ j k k j + j - k T = k j T + j k T
703 340 subidd k k k = 0
704 703 adantl j k k k = 0
705 562 adantr j k j j = 0
706 704 705 oveq12d j k k k + j - j = 0 + 0
707 00id 0 + 0 = 0
708 706 707 eqtrdi j k k k + j - j = 0
709 708 oveq1d j k k k + j - j T = 0 T
710 709 adantl ψ j k k k + j - j T = 0 T
711 701 702 710 3eqtr3d ψ j k k j T + j k T = 0 T
712 711 oveq2d ψ j k b a + k j T + j k T = b - a + 0 T
713 318 mul02d ψ 0 T = 0
714 713 oveq2d ψ b - a + 0 T = b - a + 0
715 364 368 subcld ψ b a
716 715 addid1d ψ b - a + 0 = b a
717 714 716 eqtrd ψ b - a + 0 T = b a
718 717 adantr ψ j k b - a + 0 T = b a
719 712 718 eqtrd ψ j k b a + k j T + j k T = b a
720 694 698 719 3eqtrd ψ j k b + k T - a + j T + j k T = b a
721 720 3adant3 ψ j k a + j T A b + k T A b + k T - a + j T + j k T = b a
722 721 ad2antrr ψ j k a + j T A b + k T A k j a + j T b + k T b + k T - a + j T + j k T = b a
723 692 722 breqtrd ψ j k a + j T A b + k T A k j a + j T b + k T E b a
724 simpll ψ j k a + j T A b + k T A k j ¬ a + j T b + k T ψ j k a + j T A b + k T A
725 simpr ψ j k a + j T A b + k T A ¬ a + j T b + k T ¬ a + j T b + k T
726 601 3adant2 ψ j k a + j T A b + k T A b + k T
727 726 adantr ψ j k a + j T A b + k T A ¬ a + j T b + k T b + k T
728 619 3adant2 ψ j k a + j T A b + k T A a + j T
729 728 adantr ψ j k a + j T A b + k T A ¬ a + j T b + k T a + j T
730 727 729 ltnled ψ j k a + j T A b + k T A ¬ a + j T b + k T b + k T < a + j T ¬ a + j T b + k T
731 725 730 mpbird ψ j k a + j T A b + k T A ¬ a + j T b + k T b + k T < a + j T
732 731 adantlr ψ j k a + j T A b + k T A k j ¬ a + j T b + k T b + k T < a + j T
733 535 3adant3 ψ j k a + j T A b + k T A k = b + k T - b T
734 733 adantr ψ j k a + j T A b + k T A b + k T < a + j T k = b + k T - b T
735 600 3adant2 ψ k b + k T A b + k T
736 302 3ad2ant1 ψ k b + k T A b
737 735 736 resubcld ψ k b + k T A b + k T - b
738 293 3ad2ant1 ψ k b + k T A T
739 531 3ad2ant1 ψ k b + k T A T 0
740 737 738 739 redivcld ψ k b + k T A b + k T - b T
741 740 3adant3l ψ k a + j T A b + k T A b + k T - b T
742 741 3adant2l ψ j k a + j T A b + k T A b + k T - b T
743 742 adantr ψ j k a + j T A b + k T A b + k T < a + j T b + k T - b T
744 618 3adant2 ψ j a + j T A a + j T
745 302 3ad2ant1 ψ j a + j T A b
746 744 745 resubcld ψ j a + j T A a + j T - b
747 293 3ad2ant1 ψ j a + j T A T
748 531 3ad2ant1 ψ j a + j T A T 0
749 746 747 748 redivcld ψ j a + j T A a + j T - b T
750 749 3adant3r ψ j a + j T A b + k T A a + j T - b T
751 750 3adant2r ψ j k a + j T A b + k T A a + j T - b T
752 751 adantr ψ j k a + j T A b + k T A b + k T < a + j T a + j T - b T
753 284 3ad2ant2 ψ j k a + j T A b + k T A j
754 753 adantr ψ j k a + j T A b + k T A b + k T < a + j T j
755 726 adantr ψ j k a + j T A b + k T A b + k T < a + j T b + k T
756 302 3ad2ant1 ψ j k a + j T A b + k T A b
757 756 adantr ψ j k a + j T A b + k T A b + k T < a + j T b
758 755 757 resubcld ψ j k a + j T A b + k T A b + k T < a + j T b + k T - b
759 728 adantr ψ j k a + j T A b + k T A b + k T < a + j T a + j T
760 759 757 resubcld ψ j k a + j T A b + k T A b + k T < a + j T a + j T - b
761 352 3ad2ant1 ψ j k a + j T A b + k T A T +
762 761 adantr ψ j k a + j T A b + k T A b + k T < a + j T T +
763 601 adantr ψ a + j T A b + k T A b + k T < a + j T b + k T
764 619 adantr ψ a + j T A b + k T A b + k T < a + j T a + j T
765 302 ad2antrr ψ a + j T A b + k T A b + k T < a + j T b
766 simpr ψ a + j T A b + k T A b + k T < a + j T b + k T < a + j T
767 763 764 765 766 ltsub1dd ψ a + j T A b + k T A b + k T < a + j T b + k T - b < a + j T - b
768 767 3adantl2 ψ j k a + j T A b + k T A b + k T < a + j T b + k T - b < a + j T - b
769 758 760 762 768 ltdiv1dd ψ j k a + j T A b + k T A b + k T < a + j T b + k T - b T < a + j T - b T
770 554 570 eqbrtrd ψ j k a + j T - b T < j
771 770 3adant3 ψ j k a + j T A b + k T A a + j T - b T < j
772 771 adantr ψ j k a + j T A b + k T A b + k T < a + j T a + j T - b T < j
773 743 752 754 769 772 lttrd ψ j k a + j T A b + k T A b + k T < a + j T b + k T - b T < j
774 734 773 eqbrtrd ψ j k a + j T A b + k T A b + k T < a + j T k < j
775 774 adantlr ψ j k a + j T A b + k T A k j b + k T < a + j T k < j
776 732 775 syldan ψ j k a + j T A b + k T A k j ¬ a + j T b + k T k < j
777 391 adantr ψ j k a + j T A b + k T A k < j 1 E
778 393 adantr ψ j k a + j T A b + k T A k < j 1 T
779 623 adantr ψ j k a + j T A b + k T A k < j 1 b + k T - a + j T + j k T
780 522 adantr ψ j k a + j T A b + k T A k < j 1 E T
781 peano2rem j j 1
782 753 781 syl ψ j k a + j T A b + k T A j 1
783 287 3ad2ant2 ψ j k a + j T A b + k T A k
784 782 783 resubcld ψ j k a + j T A b + k T A j - 1 - k
785 784 393 remulcld ψ j k a + j T A b + k T A j - 1 - k T
786 785 adantr ψ j k a + j T A b + k T A k < j 1 j - 1 - k T
787 753 adantr ψ j k a + j T A b + k T A k < j 1 j
788 330 a1i ψ j k a + j T A b + k T A k < j 1 1
789 787 788 resubcld ψ j k a + j T A b + k T A k < j 1 j 1
790 286 ad2antlr j k k < j 1 k
791 790 3ad2antl2 ψ j k a + j T A b + k T A k < j 1 k
792 789 791 resubcld ψ j k a + j T A b + k T A k < j 1 j - 1 - k
793 682 adantr ψ k < j 1 0 T
794 793 3ad2antl1 ψ j k a + j T A b + k T A k < j 1 0 T
795 283 ad2antrr j k k < j 1 j
796 330 a1i j k k < j 1 1
797 795 796 resubcld j k k < j 1 j 1
798 simpr j k k < j 1 k < j 1
799 simplr j k k < j 1 k
800 simpll j k k < j 1 j
801 1zzd j k k < j 1 1
802 800 801 zsubcld j k k < j 1 j 1
803 zltlem1 k j 1 k < j 1 k j - 1 - 1
804 799 802 803 syl2anc j k k < j 1 k < j 1 k j - 1 - 1
805 798 804 mpbid j k k < j 1 k j - 1 - 1
806 790 797 796 805 lesubd j k k < j 1 1 j - 1 - k
807 806 3ad2antl2 ψ j k a + j T A b + k T A k < j 1 1 j - 1 - k
808 778 792 794 807 lemulge12d ψ j k a + j T A b + k T A k < j 1 T j - 1 - k T
809 336 337 341 sub32d j k j - 1 - k = j - k - 1
810 809 oveq1d j k j - 1 - k T = j - k - 1 T
811 810 adantl ψ j k j - 1 - k T = j - k - 1 T
812 1cnd ψ j k 1
813 609 812 375 subdird ψ j k j - k - 1 T = j k T 1 T
814 319 oveq2d ψ j k T 1 T = j k T T
815 814 adantr ψ j k j k T 1 T = j k T T
816 811 813 815 3eqtrd ψ j k j - 1 - k T = j k T T
817 816 3adant3 ψ j k a + j T A b + k T A j - 1 - k T = j k T T
818 728 726 resubcld ψ j k a + j T A b + k T A a + j T - b + k T
819 270 272 277 275 iccsuble ψ a + j T A b + k T A a + j T - b + k T C B
820 819 4 breqtrrdi ψ a + j T A b + k T A a + j T - b + k T T
821 820 3adant2 ψ j k a + j T A b + k T A a + j T - b + k T T
822 818 393 398 821 lesub2dd ψ j k a + j T A b + k T A j k T T j k T a + j T - b + k T
823 817 822 eqbrtrd ψ j k a + j T A b + k T A j - 1 - k T j k T a + j T - b + k T
824 610 3adant3 ψ j k a + j T A b + k T A j k T
825 728 recnd ψ j k a + j T A b + k T A a + j T
826 602 3adant2 ψ j k a + j T A b + k T A b + k T
827 824 825 826 subsub2d ψ j k a + j T A b + k T A j k T a + j T - b + k T = j k T + b + k T - a + j T
828 621 recnd ψ j k a + j T A b + k T A b + k T - a + j T
829 824 828 addcomd ψ j k a + j T A b + k T A j k T + b + k T - a + j T = b + k T - a + j T + j k T
830 827 829 eqtrd ψ j k a + j T A b + k T A j k T a + j T - b + k T = b + k T - a + j T + j k T
831 823 830 breqtrd ψ j k a + j T A b + k T A j - 1 - k T b + k T - a + j T + j k T
832 831 adantr ψ j k a + j T A b + k T A k < j 1 j - 1 - k T b + k T - a + j T + j k T
833 778 786 779 808 832 letrd ψ j k a + j T A b + k T A k < j 1 T b + k T - a + j T + j k T
834 777 778 779 780 833 letrd ψ j k a + j T A b + k T A k < j 1 E b + k T - a + j T + j k T
835 721 adantr ψ j k a + j T A b + k T A k < j 1 b + k T - a + j T + j k T = b a
836 834 835 breqtrd ψ j k a + j T A b + k T A k < j 1 E b a
837 836 adantlr ψ j k a + j T A b + k T A k < j k < j 1 E b a
838 837 adantlr ψ j k a + j T A b + k T A k < j b + k T < a + j T k < j 1 E b a
839 simplll ψ j k a + j T A b + k T A k < j b + k T < a + j T ¬ k < j 1 ψ j k a + j T A b + k T A
840 simpll2 ψ j k a + j T A b + k T A k < j ¬ k < j 1 j k
841 simplr ψ j k a + j T A b + k T A k < j ¬ k < j 1 k < j
842 simpr ψ j k a + j T A b + k T A k < j ¬ k < j 1 ¬ k < j 1
843 581 582 580 584 lesubd j k k < j k j 1
844 843 3adant3 j k k < j ¬ k < j 1 k j 1
845 simpr j k ¬ k < j 1 ¬ k < j 1
846 284 781 syl j k j 1
847 846 adantr j k ¬ k < j 1 j 1
848 286 ad2antlr j k ¬ k < j 1 k
849 847 848 lenltd j k ¬ k < j 1 j 1 k ¬ k < j 1
850 845 849 mpbird j k ¬ k < j 1 j 1 k
851 850 3adant2 j k k < j ¬ k < j 1 j 1 k
852 580 3adant3 j k k < j ¬ k < j 1 k
853 846 3ad2ant1 j k k < j ¬ k < j 1 j 1
854 852 853 letri3d j k k < j ¬ k < j 1 k = j 1 k j 1 j 1 k
855 844 851 854 mpbir2and j k k < j ¬ k < j 1 k = j 1
856 840 841 842 855 syl3anc ψ j k a + j T A b + k T A k < j ¬ k < j 1 k = j 1
857 856 adantlr ψ j k a + j T A b + k T A k < j b + k T < a + j T ¬ k < j 1 k = j 1
858 simpl1 ψ j k a + j T A b + k T A k = j 1 ψ
859 simpl2l ψ j k a + j T A b + k T A k = j 1 j
860 simpl3l ψ j k a + j T A b + k T A k = j 1 a + j T A
861 oveq1 k = j 1 k T = j 1 T
862 861 oveq2d k = j 1 b + k T = b + j 1 T
863 862 eqcomd k = j 1 b + j 1 T = b + k T
864 863 adantl b + k T A k = j 1 b + j 1 T = b + k T
865 simpl b + k T A k = j 1 b + k T A
866 864 865 eqeltrd b + k T A k = j 1 b + j 1 T A
867 866 adantll a + j T A b + k T A k = j 1 b + j 1 T A
868 867 3ad2antl3 ψ j k a + j T A b + k T A k = j 1 b + j 1 T A
869 860 868 jca ψ j k a + j T A b + k T A k = j 1 a + j T A b + j 1 T A
870 id ψ j a + j T A ψ j a + j T A
871 870 3adant3r ψ j a + j T A b + j 1 T A ψ j a + j T A
872 744 adantr ψ j a + j T A b + j 1 T = B a + j T
873 271 3ad2ant1 ψ j a + j T A C
874 873 adantr ψ j a + j T A b + j 1 T = B C
875 269 adantr ψ a + j T A B
876 271 adantr ψ a + j T A C
877 elicc2 B C a + j T B C a + j T B a + j T a + j T C
878 875 876 877 syl2anc ψ a + j T A a + j T B C a + j T B a + j T a + j T C
879 276 878 mpbid ψ a + j T A a + j T B a + j T a + j T C
880 879 simp3d ψ a + j T A a + j T C
881 880 3adant2 ψ j a + j T A a + j T C
882 881 adantr ψ j a + j T A b + j 1 T = B a + j T C
883 nne ¬ C a + j T C = a + j T
884 540 370 pncand ψ j a + j T - j T = a
885 884 eqcomd ψ j a = a + j T - j T
886 885 adantr ψ j C = a + j T a = a + j T - j T
887 oveq1 C = a + j T C j T = a + j T - j T
888 887 eqcomd C = a + j T a + j T - j T = C j T
889 888 adantl ψ j C = a + j T a + j T - j T = C j T
890 4 oveq2i B + T = B + C - B
891 268 161 syl ψ B
892 268 162 syl ψ C
893 891 892 pncan3d ψ B + C - B = C
894 890 893 eqtr2id ψ C = B + T
895 894 oveq1d ψ C j T = B + T - j T
896 895 adantr ψ j C j T = B + T - j T
897 891 adantr ψ j B
898 897 370 547 subsub3d ψ j B j T T = B + T - j T
899 550 547 mulsubfacd ψ j j T T = j 1 T
900 899 oveq2d ψ j B j T T = B j 1 T
901 896 898 900 3eqtr2d ψ j C j T = B j 1 T
902 901 adantr ψ j C = a + j T C j T = B j 1 T
903 886 889 902 3eqtrd ψ j C = a + j T a = B j 1 T
904 903 3adantl3 ψ j a + j T A C = a + j T a = B j 1 T
905 904 adantlr ψ j a + j T A b + j 1 T = B C = a + j T a = B j 1 T
906 oveq1 b + j 1 T = B b + j 1 T - j 1 T = B j 1 T
907 906 eqcomd b + j 1 T = B B j 1 T = b + j 1 T - j 1 T
908 907 ad2antlr ψ j a + j T A b + j 1 T = B C = a + j T B j 1 T = b + j 1 T - j 1 T
909 364 ad2antrr ψ j b + j 1 T = B b
910 1cnd ψ j 1
911 550 910 subcld ψ j j 1
912 911 547 mulcld ψ j j 1 T
913 912 adantr ψ j b + j 1 T = B j 1 T
914 909 913 pncand ψ j b + j 1 T = B b + j 1 T - j 1 T = b
915 914 3adantl3 ψ j a + j T A b + j 1 T = B b + j 1 T - j 1 T = b
916 915 adantr ψ j a + j T A b + j 1 T = B C = a + j T b + j 1 T - j 1 T = b
917 905 908 916 3eqtrd ψ j a + j T A b + j 1 T = B C = a + j T a = b
918 883 917 sylan2b ψ j a + j T A b + j 1 T = B ¬ C a + j T a = b
919 309 358 ltned ψ a b
920 919 neneqd ψ ¬ a = b
921 920 3ad2ant1 ψ j a + j T A ¬ a = b
922 921 ad2antrr ψ j a + j T A b + j 1 T = B ¬ C a + j T ¬ a = b
923 918 922 condan ψ j a + j T A b + j 1 T = B C a + j T
924 872 874 882 923 leneltd ψ j a + j T A b + j 1 T = B a + j T < C
925 871 924 sylan ψ j a + j T A b + j 1 T A b + j 1 T = B a + j T < C
926 268 ad2antrr ψ a + j T A a + j T < C φ
927 simplr ψ a + j T A a + j T < C a + j T A
928 926 8 syl ψ a + j T A a + j T < C C A
929 simpr ψ a + j T A a + j T < C a + j T < C
930 simp2l φ a + j T A C A a + j T < C a + j T A
931 654 anbi1d c = a + j T c A C A a + j T A C A
932 breq1 c = a + j T c < C a + j T < C
933 931 932 3anbi23d c = a + j T φ c A C A c < C φ a + j T A C A a + j T < C
934 oveq2 c = a + j T C c = C a + j T
935 934 breq2d c = a + j T E C c E C a + j T
936 933 935 imbi12d c = a + j T φ c A C A c < C E C c φ a + j T A C A a + j T < C E C a + j T
937 simp2r φ c A C A c < C C A
938 403 anbi2d d = C c A d A c A C A
939 breq2 d = C c < d c < C
940 938 939 3anbi23d d = C φ c A d A c < d φ c A C A c < C
941 oveq1 d = C d c = C c
942 941 breq2d d = C E d c E C c
943 940 942 imbi12d d = C φ c A d A c < d E d c φ c A C A c < C E C c
944 943 515 vtoclg C A φ c A C A c < C E C c
945 937 944 mpcom φ c A C A c < C E C c
946 936 945 vtoclg a + j T A φ a + j T A C A a + j T < C E C a + j T
947 930 946 mpcom φ a + j T A C A a + j T < C E C a + j T
948 926 927 928 929 947 syl121anc ψ a + j T A a + j T < C E C a + j T
949 948 adantlrr ψ a + j T A b + j 1 T A a + j T < C E C a + j T
950 949 3adantl2 ψ j a + j T A b + j 1 T A a + j T < C E C a + j T
951 950 adantlr ψ j a + j T A b + j 1 T A b + j 1 T = B a + j T < C E C a + j T
952 892 adantr ψ b + j 1 T A C
953 599 sselda ψ b + j 1 T A b + j 1 T
954 953 recnd ψ b + j 1 T A b + j 1 T
955 952 954 npcand ψ b + j 1 T A C b + j 1 T + b + j 1 T = C
956 955 eqcomd ψ b + j 1 T A C = C b + j 1 T + b + j 1 T
957 956 oveq1d ψ b + j 1 T A C a + j T = C b + j 1 T + b + j 1 T - a + j T
958 957 adantrl ψ a + j T A b + j 1 T A C a + j T = C b + j 1 T + b + j 1 T - a + j T
959 958 3adant2 ψ j a + j T A b + j 1 T A C a + j T = C b + j 1 T + b + j 1 T - a + j T
960 959 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B C a + j T = C b + j 1 T + b + j 1 T - a + j T
961 oveq2 b + j 1 T = B C b + j 1 T = C B
962 961 oveq1d b + j 1 T = B C b + j 1 T + b + j 1 T = C B + b + j 1 T
963 962 oveq1d b + j 1 T = B C b + j 1 T + b + j 1 T - a + j T = C B + b + j 1 T - a + j T
964 963 adantl ψ j a + j T A b + j 1 T A b + j 1 T = B C b + j 1 T + b + j 1 T - a + j T = C B + b + j 1 T - a + j T
965 4 eqcomi C B = T
966 965 oveq1i C B + b + j 1 T = T + b + j 1 T
967 966 a1i ψ b + j 1 T A C B + b + j 1 T = T + b + j 1 T
968 318 adantr ψ b + j 1 T A T
969 968 954 addcomd ψ b + j 1 T A T + b + j 1 T = b + j 1 T + T
970 967 969 eqtrd ψ b + j 1 T A C B + b + j 1 T = b + j 1 T + T
971 970 oveq1d ψ b + j 1 T A C B + b + j 1 T - a + j T = b + j 1 T + T - a + j T
972 971 adantrl ψ a + j T A b + j 1 T A C B + b + j 1 T - a + j T = b + j 1 T + T - a + j T
973 972 3adant2 ψ j a + j T A b + j 1 T A C B + b + j 1 T - a + j T = b + j 1 T + T - a + j T
974 973 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B C B + b + j 1 T - a + j T = b + j 1 T + T - a + j T
975 954 adantrl ψ a + j T A b + j 1 T A b + j 1 T
976 975 3adant2 ψ j a + j T A b + j 1 T A b + j 1 T
977 976 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B b + j 1 T
978 318 3ad2ant1 ψ j a + j T A b + j 1 T A T
979 978 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B T
980 618 adantrr ψ a + j T A b + j 1 T A a + j T
981 980 recnd ψ a + j T A b + j 1 T A a + j T
982 981 3adant2 ψ j a + j T A b + j 1 T A a + j T
983 982 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B a + j T
984 977 979 983 addsubd ψ j a + j T A b + j 1 T A b + j 1 T = B b + j 1 T + T - a + j T = b + j 1 T - a + j T + T
985 974 984 eqtrd ψ j a + j T A b + j 1 T A b + j 1 T = B C B + b + j 1 T - a + j T = b + j 1 T - a + j T + T
986 960 964 985 3eqtrd ψ j a + j T A b + j 1 T A b + j 1 T = B C a + j T = b + j 1 T - a + j T + T
987 986 adantr ψ j a + j T A b + j 1 T A b + j 1 T = B a + j T < C C a + j T = b + j 1 T - a + j T + T
988 951 987 breqtrd ψ j a + j T A b + j 1 T A b + j 1 T = B a + j T < C E b + j 1 T - a + j T + T
989 925 988 mpdan ψ j a + j T A b + j 1 T A b + j 1 T = B E b + j 1 T - a + j T + T
990 simpl1 ψ j a + j T A b + j 1 T A ¬ b + j 1 T = B ψ
991 simpl3r ψ j a + j T A b + j 1 T A ¬ b + j 1 T = B b + j 1 T A
992 simpr ψ j a + j T A b + j 1 T A ¬ b + j 1 T = B ¬ b + j 1 T = B
993 269 3ad2ant1 ψ b + j 1 T A ¬ b + j 1 T = B B
994 953 3adant3 ψ b + j 1 T A ¬ b + j 1 T = B b + j 1 T
995 273 sselda ψ b + j 1 T A b + j 1 T B C
996 269 adantr ψ b + j 1 T A B
997 271 adantr ψ b + j 1 T A C
998 elicc2 B C b + j 1 T B C b + j 1 T B b + j 1 T b + j 1 T C
999 996 997 998 syl2anc ψ b + j 1 T A b + j 1 T B C b + j 1 T B b + j 1 T b + j 1 T C
1000 995 999 mpbid ψ b + j 1 T A b + j 1 T B b + j 1 T b + j 1 T C
1001 1000 simp2d ψ b + j 1 T A B b + j 1 T
1002 1001 3adant3 ψ b + j 1 T A ¬ b + j 1 T = B B b + j 1 T
1003 neqne ¬ b + j 1 T = B b + j 1 T B
1004 1003 3ad2ant3 ψ b + j 1 T A ¬ b + j 1 T = B b + j 1 T B
1005 993 994 1002 1004 leneltd ψ b + j 1 T A ¬ b + j 1 T = B B < b + j 1 T
1006 990 991 992 1005 syl3anc ψ j a + j T A b + j 1 T A ¬ b + j 1 T = B B < b + j 1 T
1007 390 3ad2ant1 ψ j a + j T A b + j 1 T A E
1008 1007 adantr ψ j a + j T A b + j 1 T A B < b + j 1 T E
1009 953 adantrl ψ a + j T A b + j 1 T A b + j 1 T
1010 1009 3adant2 ψ j a + j T A b + j 1 T A b + j 1 T
1011 269 3ad2ant1 ψ j a + j T A b + j 1 T A B
1012 1010 1011 resubcld ψ j a + j T A b + j 1 T A b + j 1 T - B
1013 1012 adantr ψ j a + j T A b + j 1 T A B < b + j 1 T b + j 1 T - B
1014 1009 980 resubcld ψ a + j T A b + j 1 T A b + j 1 T - a + j T
1015 293 adantr ψ a + j T A b + j 1 T A T
1016 1014 1015 readdcld ψ a + j T A b + j 1 T A b + j 1 T - a + j T + T
1017 1016 3adant2 ψ j a + j T A b + j 1 T A b + j 1 T - a + j T + T
1018 1017 adantr ψ j a + j T A b + j 1 T A B < b + j 1 T b + j 1 T - a + j T + T
1019 268 adantr ψ B < b + j 1 T φ
1020 1019 3ad2antl1 ψ j a + j T A b + j 1 T A B < b + j 1 T φ
1021 1020 7 syl ψ j a + j T A b + j 1 T A B < b + j 1 T B A
1022 simpl3r ψ j a + j T A b + j 1 T A B < b + j 1 T b + j 1 T A
1023 simpr ψ j a + j T A b + j 1 T A B < b + j 1 T B < b + j 1 T
1024 simp2r φ B A b + j 1 T A B < b + j 1 T b + j 1 T A
1025 eleq1 d = b + j 1 T d A b + j 1 T A
1026 1025 anbi2d d = b + j 1 T B A d A B A b + j 1 T A
1027 breq2 d = b + j 1 T B < d B < b + j 1 T
1028 1026 1027 3anbi23d d = b + j 1 T φ B A d A B < d φ B A b + j 1 T A B < b + j 1 T
1029 oveq1 d = b + j 1 T d B = b + j 1 T - B
1030 1029 breq2d d = b + j 1 T E d B E b + j 1 T - B
1031 1028 1030 imbi12d d = b + j 1 T φ B A d A B < d E d B φ B A b + j 1 T A B < b + j 1 T E b + j 1 T - B
1032 1031 517 vtoclg b + j 1 T A φ B A b + j 1 T A B < b + j 1 T E b + j 1 T - B
1033 1024 1032 mpcom φ B A b + j 1 T A B < b + j 1 T E b + j 1 T - B
1034 1020 1021 1022 1023 1033 syl121anc ψ j a + j T A b + j 1 T A B < b + j 1 T E b + j 1 T - B
1035 269 adantr ψ a + j T A b + j 1 T A B
1036 980 1035 resubcld ψ a + j T A b + j 1 T A a + j T - B
1037 965 1015 eqeltrid ψ a + j T A b + j 1 T A C B
1038 271 adantr ψ a + j T A b + j 1 T A C
1039 880 adantrr ψ a + j T A b + j 1 T A a + j T C
1040 980 1038 1035 1039 lesub1dd ψ a + j T A b + j 1 T A a + j T - B C B
1041 1036 1037 1014 1040 leadd2dd ψ a + j T A b + j 1 T A b + j 1 T - a + j T + a + j T - B b + j 1 T - a + j T + C - B
1042 975 981 npcand ψ a + j T A b + j 1 T A b + j 1 T - a + j T + a + j T = b + j 1 T
1043 1042 eqcomd ψ a + j T A b + j 1 T A b + j 1 T = b + j 1 T - a + j T + a + j T
1044 1043 oveq1d ψ a + j T A b + j 1 T A b + j 1 T - B = b + j 1 T - a + j T + a + j T - B
1045 1014 recnd ψ a + j T A b + j 1 T A b + j 1 T - a + j T
1046 891 adantr ψ a + j T A b + j 1 T A B
1047 1045 981 1046 addsubassd ψ a + j T A b + j 1 T A b + j 1 T - a + j T + a + j T - B = b + j 1 T - a + j T + a + j T - B
1048 1044 1047 eqtrd ψ a + j T A b + j 1 T A b + j 1 T - B = b + j 1 T - a + j T + a + j T - B
1049 4 oveq2i b + j 1 T - a + j T + T = b + j 1 T - a + j T + C - B
1050 1049 a1i ψ a + j T A b + j 1 T A b + j 1 T - a + j T + T = b + j 1 T - a + j T + C - B
1051 1041 1048 1050 3brtr4d ψ a + j T A b + j 1 T A b + j 1 T - B b + j 1 T - a + j T + T
1052 1051 3adant2 ψ j a + j T A b + j 1 T A b + j 1 T - B b + j 1 T - a + j T + T
1053 1052 adantr ψ j a + j T A b + j 1 T A B < b + j 1 T b + j 1 T - B b + j 1 T - a + j T + T
1054 1008 1013 1018 1034 1053 letrd ψ j a + j T A b + j 1 T A B < b + j 1 T E b + j 1 T - a + j T + T
1055 1006 1054 syldan ψ j a + j T A b + j 1 T A ¬ b + j 1 T = B E b + j 1 T - a + j T + T
1056 989 1055 pm2.61dan ψ j a + j T A b + j 1 T A E b + j 1 T - a + j T + T
1057 858 859 869 1056 syl3anc ψ j k a + j T A b + k T A k = j 1 E b + j 1 T - a + j T + T
1058 720 eqcomd ψ j k b a = b + k T - a + j T + j k T
1059 1058 adantr ψ j k k = j 1 b a = b + k T - a + j T + j k T
1060 862 oveq1d k = j 1 b + k T - a + j T = b + j 1 T - a + j T
1061 1060 adantl ψ j k = j 1 b + k T - a + j T = b + j 1 T - a + j T
1062 oveq2 k = j 1 j k = j j 1
1063 1062 oveq1d k = j 1 j k T = j j 1 T
1064 1063 adantl ψ j k = j 1 j k T = j j 1 T
1065 1cnd j 1
1066 335 1065 nncand j j j 1 = 1
1067 1066 oveq1d j j j 1 T = 1 T
1068 1067 ad2antlr ψ j k = j 1 j j 1 T = 1 T
1069 319 ad2antrr ψ j k = j 1 1 T = T
1070 1064 1068 1069 3eqtrd ψ j k = j 1 j k T = T
1071 1061 1070 oveq12d ψ j k = j 1 b + k T - a + j T + j k T = b + j 1 T - a + j T + T
1072 1071 adantlrr ψ j k k = j 1 b + k T - a + j T + j k T = b + j 1 T - a + j T + T
1073 1059 1072 eqtr2d ψ j k k = j 1 b + j 1 T - a + j T + T = b a
1074 1073 3adantl3 ψ j k a + j T A b + k T A k = j 1 b + j 1 T - a + j T + T = b a
1075 1057 1074 breqtrd ψ j k a + j T A b + k T A k = j 1 E b a
1076 839 857 1075 syl2anc ψ j k a + j T A b + k T A k < j b + k T < a + j T ¬ k < j 1 E b a
1077 838 1076 pm2.61dan ψ j k a + j T A b + k T A k < j b + k T < a + j T E b a
1078 724 776 732 1077 syl21anc ψ j k a + j T A b + k T A k j ¬ a + j T b + k T E b a
1079 723 1078 pm2.61dan ψ j k a + j T A b + k T A k j E b a
1080 387 1079 mpdan ψ j k a + j T A b + k T A E b a
1081 309 302 358 ltled ψ a b
1082 309 302 1081 abssuble0d ψ a b = b a
1083 1082 eqcomd ψ b a = a b
1084 1083 3ad2ant1 ψ j k a + j T A b + k T A b a = a b
1085 1080 1084 breqtrd ψ j k a + j T A b + k T A E a b
1086 1085 3exp ψ j k a + j T A b + k T A E a b
1087 1086 rexlimdvv ψ j k a + j T A b + k T A E a b
1088 265 1087 mpd ψ E a b
1089 18 1088 sylbir φ a b a < b j k a + j T A b + k T A E a b
1090 264 1089 chvarvv φ y b y < b j k y + j T A b + k T A E y b
1091 251 1090 chvarvv φ y z y < z j k y + j T A z + k T A E y z
1092 231 237 238 1091 syl21anc φ y z y z j k y + j T A z + k T A y < z E y z
1093 simpr y z y z ¬ y < z ¬ y < z
1094 simpl3 y z y z ¬ y < z y z
1095 simpl1 y z y z ¬ y < z y
1096 simpl2 y z y z ¬ y < z z
1097 1095 1096 lttri2d y z y z ¬ y < z y z y < z z < y
1098 1094 1097 mpbid y z y z ¬ y < z y < z z < y
1099 1098 ord y z y z ¬ y < z ¬ y < z z < y
1100 1093 1099 mpd y z y z ¬ y < z z < y
1101 1100 adantll φ y z y z ¬ y < z z < y
1102 1101 adantlr φ y z y z j k y + j T A z + k T A ¬ y < z z < y
1103 simplll φ y z j k y + j T A z + k T A z < y φ
1104 simplr y z z < y z
1105 simpll y z z < y y
1106 simpr y z z < y z < y
1107 1104 1105 1106 3jca y z z < y z y z < y
1108 1107 adantll φ y z z < y z y z < y
1109 1108 adantlr φ y z j k y + j T A z + k T A z < y z y z < y
1110 oveq1 j = i j T = i T
1111 1110 oveq2d j = i y + j T = y + i T
1112 1111 eleq1d j = i y + j T A y + i T A
1113 1112 anbi1d j = i y + j T A z + k T A y + i T A z + k T A
1114 oveq1 k = l k T = l T
1115 1114 oveq2d k = l z + k T = z + l T
1116 1115 eleq1d k = l z + k T A z + l T A
1117 1116 anbi2d k = l y + i T A z + k T A y + i T A z + l T A
1118 1113 1117 cbvrex2vw j k y + j T A z + k T A i l y + i T A z + l T A
1119 oveq1 i = k i T = k T
1120 1119 oveq2d i = k y + i T = y + k T
1121 1120 eleq1d i = k y + i T A y + k T A
1122 1121 anbi1d i = k y + i T A z + l T A y + k T A z + l T A
1123 oveq1 l = j l T = j T
1124 1123 oveq2d l = j z + l T = z + j T
1125 1124 eleq1d l = j z + l T A z + j T A
1126 1125 anbi2d l = j y + k T A z + l T A y + k T A z + j T A
1127 1122 1126 cbvrex2vw i l y + i T A z + l T A k j y + k T A z + j T A
1128 rexcom k j y + k T A z + j T A j k y + k T A z + j T A
1129 ancom y + k T A z + j T A z + j T A y + k T A
1130 1129 2rexbii j k y + k T A z + j T A j k z + j T A y + k T A
1131 1127 1128 1130 3bitri i l y + i T A z + l T A j k z + j T A y + k T A
1132 1118 1131 sylbb j k y + j T A z + k T A j k z + j T A y + k T A
1133 1132 ad2antlr φ y z j k y + j T A z + k T A z < y j k z + j T A y + k T A
1134 eleq1 b = y b y
1135 breq2 b = y z < b z < y
1136 1134 1135 3anbi23d b = y z b z < b z y z < y
1137 1136 anbi2d b = y φ z b z < b φ z y z < y
1138 oveq1 b = y b + k T = y + k T
1139 1138 eleq1d b = y b + k T A y + k T A
1140 1139 anbi2d b = y z + j T A b + k T A z + j T A y + k T A
1141 1140 2rexbidv b = y j k z + j T A b + k T A j k z + j T A y + k T A
1142 1137 1141 anbi12d b = y φ z b z < b j k z + j T A b + k T A φ z y z < y j k z + j T A y + k T A
1143 oveq2 b = y z b = z y
1144 1143 fveq2d b = y z b = z y
1145 1144 breq2d b = y E z b E z y
1146 1142 1145 imbi12d b = y φ z b z < b j k z + j T A b + k T A E z b φ z y z < y j k z + j T A y + k T A E z y
1147 eleq1 a = z a z
1148 breq1 a = z a < b z < b
1149 1147 1148 3anbi13d a = z a b a < b z b z < b
1150 1149 anbi2d a = z φ a b a < b φ z b z < b
1151 oveq1 a = z a + j T = z + j T
1152 1151 eleq1d a = z a + j T A z + j T A
1153 1152 anbi1d a = z a + j T A b + k T A z + j T A b + k T A
1154 1153 2rexbidv a = z j k a + j T A b + k T A j k z + j T A b + k T A
1155 1150 1154 anbi12d a = z φ a b a < b j k a + j T A b + k T A φ z b z < b j k z + j T A b + k T A
1156 oveq1 a = z a b = z b
1157 1156 fveq2d a = z a b = z b
1158 1157 breq2d a = z E a b E z b
1159 1155 1158 imbi12d a = z φ a b a < b j k a + j T A b + k T A E a b φ z b z < b j k z + j T A b + k T A E z b
1160 1159 1089 chvarvv φ z b z < b j k z + j T A b + k T A E z b
1161 1146 1160 chvarvv φ z y z < y j k z + j T A y + k T A E z y
1162 1103 1109 1133 1161 syl21anc φ y z j k y + j T A z + k T A z < y E z y
1163 recn z z
1164 1163 adantl y z z
1165 recn y y
1166 1165 adantr y z y
1167 1164 1166 abssubd y z z y = y z
1168 1167 adantl φ y z z y = y z
1169 1168 ad2antrr φ y z j k y + j T A z + k T A z < y z y = y z
1170 1162 1169 breqtrd φ y z j k y + j T A z + k T A z < y E y z
1171 1170 ex φ y z j k y + j T A z + k T A z < y E y z
1172 1171 3adantlr3 φ y z y z j k y + j T A z + k T A z < y E y z
1173 1172 adantr φ y z y z j k y + j T A z + k T A ¬ y < z z < y E y z
1174 1102 1173 mpd φ y z y z j k y + j T A z + k T A ¬ y < z E y z
1175 1092 1174 pm2.61dan φ y z y z j k y + j T A z + k T A E y z
1176 198 206 230 1175 syl21anc φ y H z H y z E y z
1177 389 ad2antrr φ y H z H y z E
1178 200 203 resubcld φ y H z H y z
1179 1178 recnd φ y H z H y z
1180 1179 abscld φ y H z H y z
1181 1180 adantr φ y H z H y z y z
1182 1177 1181 lenltd φ y H z H y z E y z ¬ y z < E
1183 1176 1182 mpbid φ y H z H y z ¬ y z < E
1184 nan φ y H z H ¬ y z y z < E φ y H z H y z ¬ y z < E
1185 1183 1184 mpbir φ y H z H ¬ y z y z < E
1186 1185 ralrimivva φ y H z H ¬ y z y z < E
1187 ralnex2 y H z H ¬ y z y z < E ¬ y H z H y z y z < E
1188 1186 1187 sylib φ ¬ y H z H y z y z < E
1189 1188 ad2antrr φ x K x limPt J H ¬ y H z H y z y z < E
1190 197 1189 pm2.65da φ x K ¬ x limPt J H
1191 1190 intnanrd φ x K ¬ x limPt J H x X Y
1192 elin x limPt J H X Y x limPt J H x X Y
1193 1191 1192 sylnibr φ x K ¬ x limPt J H X Y
1194 26 a1i φ x K J Top
1195 27 adantr φ x K X Y
1196 24 adantr φ x K H X Y
1197 30 16 restlp J Top X Y H X Y limPt K H = limPt J H X Y
1198 1194 1195 1196 1197 syl3anc φ x K limPt K H = limPt J H X Y
1199 1193 1198 neleqtrrd φ x K ¬ x limPt K H
1200 1199 nrexdv φ ¬ x K x limPt K H
1201 1200 adantr φ ¬ H Fin ¬ x K x limPt K H
1202 41 1201 condan φ H Fin