| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bwt2.1 |
|
| 2 |
|
pm3.24 |
|
| 3 |
2
|
a1i |
|
| 4 |
3
|
nrex |
|
| 5 |
|
r19.29 |
|
| 6 |
4 5
|
mto |
|
| 7 |
6
|
a1i |
|
| 8 |
7
|
nrex |
|
| 9 |
|
ralnex |
|
| 10 |
|
cmptop |
|
| 11 |
1
|
islp3 |
|
| 12 |
11
|
3expa |
|
| 13 |
12
|
notbid |
|
| 14 |
13
|
ralbidva |
|
| 15 |
10 14
|
sylan |
|
| 16 |
9 15
|
bitr3id |
|
| 17 |
|
rexanali |
|
| 18 |
|
nne |
|
| 19 |
|
vex |
|
| 20 |
|
sneq |
|
| 21 |
20
|
difeq2d |
|
| 22 |
21
|
ineq2d |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
19 23
|
spcev |
|
| 25 |
18 24
|
sylbi |
|
| 26 |
25
|
anim2i |
|
| 27 |
26
|
reximi |
|
| 28 |
17 27
|
sylbir |
|
| 29 |
28
|
ralimi |
|
| 30 |
1
|
cmpcov2 |
|
| 31 |
30
|
ex |
|
| 32 |
29 31
|
syl5 |
|
| 33 |
32
|
adantr |
|
| 34 |
16 33
|
sylbid |
|
| 35 |
34
|
3adant3 |
|
| 36 |
|
elinel2 |
|
| 37 |
|
sseq2 |
|
| 38 |
37
|
biimpac |
|
| 39 |
|
infssuni |
|
| 40 |
39
|
3expa |
|
| 41 |
40
|
ancoms |
|
| 42 |
38 41
|
sylan |
|
| 43 |
42
|
an42s |
|
| 44 |
43
|
anassrs |
|
| 45 |
36 44
|
sylanl2 |
|
| 46 |
|
0fi |
|
| 47 |
|
eleq1 |
|
| 48 |
46 47
|
mpbiri |
|
| 49 |
|
snfi |
|
| 50 |
|
unfi |
|
| 51 |
48 49 50
|
sylancl |
|
| 52 |
|
ssun1 |
|
| 53 |
|
ssun1 |
|
| 54 |
|
undif1 |
|
| 55 |
53 54
|
sseqtrri |
|
| 56 |
|
ss2in |
|
| 57 |
52 55 56
|
mp2an |
|
| 58 |
|
incom |
|
| 59 |
|
undir |
|
| 60 |
57 58 59
|
3sstr4i |
|
| 61 |
|
ssfi |
|
| 62 |
51 60 61
|
sylancl |
|
| 63 |
62
|
exlimiv |
|
| 64 |
63
|
ralimi |
|
| 65 |
45 64
|
anim12ci |
|
| 66 |
65
|
expl |
|
| 67 |
66
|
reximdva |
|
| 68 |
67
|
3adant1 |
|
| 69 |
35 68
|
syld |
|
| 70 |
8 69
|
mt3i |
|