Metamath Proof Explorer


Theorem islp3

Description: The predicate " P is a limit point of S " in terms of open sets. see islp2 , elcls , islp . (Contributed by FL, 31-Jul-2009)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion islp3 J Top S X P X P limPt J S x J P x x S P

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 islp J Top S X P limPt J S P cls J S P
3 2 3adant3 J Top S X P X P limPt J S P cls J S P
4 simp2 J Top S X P X S X
5 4 ssdifssd J Top S X P X S P X
6 1 elcls J Top S P X P X P cls J S P x J P x x S P
7 5 6 syld3an2 J Top S X P X P cls J S P x J P x x S P
8 3 7 bitrd J Top S X P X P limPt J S x J P x x S P