Step |
Hyp |
Ref |
Expression |
1 |
|
dirkerper.1 |
|- D = ( n e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
2 |
|
dirkerper.2 |
|- T = ( 2 x. _pi ) |
3 |
2
|
eqcomi |
|- ( 2 x. _pi ) = T |
4 |
3
|
oveq2i |
|- ( 1 x. ( 2 x. _pi ) ) = ( 1 x. T ) |
5 |
|
2re |
|- 2 e. RR |
6 |
|
pire |
|- _pi e. RR |
7 |
5 6
|
remulcli |
|- ( 2 x. _pi ) e. RR |
8 |
2 7
|
eqeltri |
|- T e. RR |
9 |
8
|
recni |
|- T e. CC |
10 |
9
|
mulid2i |
|- ( 1 x. T ) = T |
11 |
4 10
|
eqtri |
|- ( 1 x. ( 2 x. _pi ) ) = T |
12 |
11
|
oveq2i |
|- ( x + ( 1 x. ( 2 x. _pi ) ) ) = ( x + T ) |
13 |
12
|
eqcomi |
|- ( x + T ) = ( x + ( 1 x. ( 2 x. _pi ) ) ) |
14 |
13
|
oveq1i |
|- ( ( x + T ) mod ( 2 x. _pi ) ) = ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) |
15 |
14
|
a1i |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( x + T ) mod ( 2 x. _pi ) ) = ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) ) |
16 |
|
id |
|- ( x e. RR -> x e. RR ) |
17 |
16
|
ad2antlr |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> x e. RR ) |
18 |
|
2rp |
|- 2 e. RR+ |
19 |
|
pirp |
|- _pi e. RR+ |
20 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
21 |
18 19 20
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
22 |
21
|
a1i |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) e. RR+ ) |
23 |
|
1z |
|- 1 e. ZZ |
24 |
23
|
a1i |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> 1 e. ZZ ) |
25 |
|
modcyc |
|- ( ( x e. RR /\ ( 2 x. _pi ) e. RR+ /\ 1 e. ZZ ) -> ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) = ( x mod ( 2 x. _pi ) ) ) |
26 |
17 22 24 25
|
syl3anc |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) = ( x mod ( 2 x. _pi ) ) ) |
27 |
|
simpr |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> ( x mod ( 2 x. _pi ) ) = 0 ) |
28 |
15 26 27
|
3eqtrd |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( x + T ) mod ( 2 x. _pi ) ) = 0 ) |
29 |
28
|
iftrued |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) ) |
30 |
|
iftrue |
|- ( ( x mod ( 2 x. _pi ) ) = 0 -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) ) |
31 |
30
|
adantl |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) ) |
32 |
29 31
|
eqtr4d |
|- ( ( ( N e. NN /\ x e. RR ) /\ ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) |
33 |
|
iffalse |
|- ( -. ( x mod ( 2 x. _pi ) ) = 0 -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) |
34 |
33
|
adantl |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) |
35 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
36 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
37 |
36
|
a1i |
|- ( N e. NN -> ( 1 / 2 ) e. CC ) |
38 |
35 37
|
addcld |
|- ( N e. NN -> ( N + ( 1 / 2 ) ) e. CC ) |
39 |
38
|
adantr |
|- ( ( N e. NN /\ x e. RR ) -> ( N + ( 1 / 2 ) ) e. CC ) |
40 |
|
recn |
|- ( x e. RR -> x e. CC ) |
41 |
40
|
adantl |
|- ( ( N e. NN /\ x e. RR ) -> x e. CC ) |
42 |
39 41
|
mulcld |
|- ( ( N e. NN /\ x e. RR ) -> ( ( N + ( 1 / 2 ) ) x. x ) e. CC ) |
43 |
42
|
sincld |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) e. CC ) |
44 |
43
|
adantr |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) e. CC ) |
45 |
7
|
recni |
|- ( 2 x. _pi ) e. CC |
46 |
45
|
a1i |
|- ( ( N e. NN /\ x e. RR ) -> ( 2 x. _pi ) e. CC ) |
47 |
41
|
halfcld |
|- ( ( N e. NN /\ x e. RR ) -> ( x / 2 ) e. CC ) |
48 |
47
|
sincld |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( x / 2 ) ) e. CC ) |
49 |
46 48
|
mulcld |
|- ( ( N e. NN /\ x e. RR ) -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) e. CC ) |
50 |
49
|
adantr |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) e. CC ) |
51 |
|
dirkerdenne0 |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) =/= 0 ) |
52 |
51
|
adantll |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) =/= 0 ) |
53 |
44 50 52
|
div2negd |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / -u ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) |
54 |
14
|
a1i |
|- ( x e. RR -> ( ( x + T ) mod ( 2 x. _pi ) ) = ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) ) |
55 |
21 23 25
|
mp3an23 |
|- ( x e. RR -> ( ( x + ( 1 x. ( 2 x. _pi ) ) ) mod ( 2 x. _pi ) ) = ( x mod ( 2 x. _pi ) ) ) |
56 |
54 55
|
eqtrd |
|- ( x e. RR -> ( ( x + T ) mod ( 2 x. _pi ) ) = ( x mod ( 2 x. _pi ) ) ) |
57 |
56
|
adantr |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( x + T ) mod ( 2 x. _pi ) ) = ( x mod ( 2 x. _pi ) ) ) |
58 |
|
simpr |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> -. ( x mod ( 2 x. _pi ) ) = 0 ) |
59 |
58
|
neqned |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( x mod ( 2 x. _pi ) ) =/= 0 ) |
60 |
57 59
|
eqnetrd |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( x + T ) mod ( 2 x. _pi ) ) =/= 0 ) |
61 |
60
|
neneqd |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> -. ( ( x + T ) mod ( 2 x. _pi ) ) = 0 ) |
62 |
|
iffalse |
|- ( -. ( ( x + T ) mod ( 2 x. _pi ) ) = 0 -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) |
63 |
2
|
oveq2i |
|- ( x + T ) = ( x + ( 2 x. _pi ) ) |
64 |
63
|
oveq2i |
|- ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) = ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) |
65 |
64
|
fveq2i |
|- ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) |
66 |
63
|
oveq1i |
|- ( ( x + T ) / 2 ) = ( ( x + ( 2 x. _pi ) ) / 2 ) |
67 |
66
|
fveq2i |
|- ( sin ` ( ( x + T ) / 2 ) ) = ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) |
68 |
67
|
oveq2i |
|- ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) |
69 |
65 68
|
oveq12i |
|- ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) |
70 |
62 69
|
eqtrdi |
|- ( -. ( ( x + T ) mod ( 2 x. _pi ) ) = 0 -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) ) |
71 |
61 70
|
syl |
|- ( ( x e. RR /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) ) |
72 |
71
|
adantll |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) ) |
73 |
45
|
a1i |
|- ( N e. NN -> ( 2 x. _pi ) e. CC ) |
74 |
35 37 73
|
adddird |
|- ( N e. NN -> ( ( N + ( 1 / 2 ) ) x. ( 2 x. _pi ) ) = ( ( N x. ( 2 x. _pi ) ) + ( ( 1 / 2 ) x. ( 2 x. _pi ) ) ) ) |
75 |
|
ax-1cn |
|- 1 e. CC |
76 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
77 |
|
2cn |
|- 2 e. CC |
78 |
|
picn |
|- _pi e. CC |
79 |
77 78
|
mulcli |
|- ( 2 x. _pi ) e. CC |
80 |
|
div32 |
|- ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 x. _pi ) e. CC ) -> ( ( 1 / 2 ) x. ( 2 x. _pi ) ) = ( 1 x. ( ( 2 x. _pi ) / 2 ) ) ) |
81 |
75 76 79 80
|
mp3an |
|- ( ( 1 / 2 ) x. ( 2 x. _pi ) ) = ( 1 x. ( ( 2 x. _pi ) / 2 ) ) |
82 |
|
2ne0 |
|- 2 =/= 0 |
83 |
79 77 82
|
divcli |
|- ( ( 2 x. _pi ) / 2 ) e. CC |
84 |
83
|
mulid2i |
|- ( 1 x. ( ( 2 x. _pi ) / 2 ) ) = ( ( 2 x. _pi ) / 2 ) |
85 |
78 77 82
|
divcan3i |
|- ( ( 2 x. _pi ) / 2 ) = _pi |
86 |
84 85
|
eqtri |
|- ( 1 x. ( ( 2 x. _pi ) / 2 ) ) = _pi |
87 |
81 86
|
eqtri |
|- ( ( 1 / 2 ) x. ( 2 x. _pi ) ) = _pi |
88 |
87
|
oveq2i |
|- ( ( N x. ( 2 x. _pi ) ) + ( ( 1 / 2 ) x. ( 2 x. _pi ) ) ) = ( ( N x. ( 2 x. _pi ) ) + _pi ) |
89 |
74 88
|
eqtrdi |
|- ( N e. NN -> ( ( N + ( 1 / 2 ) ) x. ( 2 x. _pi ) ) = ( ( N x. ( 2 x. _pi ) ) + _pi ) ) |
90 |
89
|
oveq2d |
|- ( N e. NN -> ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N + ( 1 / 2 ) ) x. ( 2 x. _pi ) ) ) = ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N x. ( 2 x. _pi ) ) + _pi ) ) ) |
91 |
90
|
adantr |
|- ( ( N e. NN /\ x e. RR ) -> ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N + ( 1 / 2 ) ) x. ( 2 x. _pi ) ) ) = ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N x. ( 2 x. _pi ) ) + _pi ) ) ) |
92 |
39 41 46
|
adddid |
|- ( ( N e. NN /\ x e. RR ) -> ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) = ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N + ( 1 / 2 ) ) x. ( 2 x. _pi ) ) ) ) |
93 |
35 73
|
mulcld |
|- ( N e. NN -> ( N x. ( 2 x. _pi ) ) e. CC ) |
94 |
93
|
adantr |
|- ( ( N e. NN /\ x e. RR ) -> ( N x. ( 2 x. _pi ) ) e. CC ) |
95 |
78
|
a1i |
|- ( ( N e. NN /\ x e. RR ) -> _pi e. CC ) |
96 |
42 94 95
|
addassd |
|- ( ( N e. NN /\ x e. RR ) -> ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) + _pi ) = ( ( ( N + ( 1 / 2 ) ) x. x ) + ( ( N x. ( 2 x. _pi ) ) + _pi ) ) ) |
97 |
91 92 96
|
3eqtr4d |
|- ( ( N e. NN /\ x e. RR ) -> ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) = ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) + _pi ) ) |
98 |
97
|
fveq2d |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) = ( sin ` ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) + _pi ) ) ) |
99 |
42 94
|
addcld |
|- ( ( N e. NN /\ x e. RR ) -> ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) e. CC ) |
100 |
|
sinppi |
|- ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) e. CC -> ( sin ` ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) + _pi ) ) = -u ( sin ` ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) ) ) |
101 |
99 100
|
syl |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) + _pi ) ) = -u ( sin ` ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) ) ) |
102 |
|
simpl |
|- ( ( N e. NN /\ x e. RR ) -> N e. NN ) |
103 |
102
|
nnzd |
|- ( ( N e. NN /\ x e. RR ) -> N e. ZZ ) |
104 |
|
sinper |
|- ( ( ( ( N + ( 1 / 2 ) ) x. x ) e. CC /\ N e. ZZ ) -> ( sin ` ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
105 |
42 103 104
|
syl2anc |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
106 |
105
|
negeqd |
|- ( ( N e. NN /\ x e. RR ) -> -u ( sin ` ( ( ( N + ( 1 / 2 ) ) x. x ) + ( N x. ( 2 x. _pi ) ) ) ) = -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
107 |
98 101 106
|
3eqtrd |
|- ( ( N e. NN /\ x e. RR ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) = -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
108 |
45
|
a1i |
|- ( x e. RR -> ( 2 x. _pi ) e. CC ) |
109 |
77
|
a1i |
|- ( x e. RR -> 2 e. CC ) |
110 |
82
|
a1i |
|- ( x e. RR -> 2 =/= 0 ) |
111 |
40 108 109 110
|
divdird |
|- ( x e. RR -> ( ( x + ( 2 x. _pi ) ) / 2 ) = ( ( x / 2 ) + ( ( 2 x. _pi ) / 2 ) ) ) |
112 |
85
|
a1i |
|- ( x e. RR -> ( ( 2 x. _pi ) / 2 ) = _pi ) |
113 |
112
|
oveq2d |
|- ( x e. RR -> ( ( x / 2 ) + ( ( 2 x. _pi ) / 2 ) ) = ( ( x / 2 ) + _pi ) ) |
114 |
111 113
|
eqtrd |
|- ( x e. RR -> ( ( x + ( 2 x. _pi ) ) / 2 ) = ( ( x / 2 ) + _pi ) ) |
115 |
114
|
fveq2d |
|- ( x e. RR -> ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) = ( sin ` ( ( x / 2 ) + _pi ) ) ) |
116 |
40
|
halfcld |
|- ( x e. RR -> ( x / 2 ) e. CC ) |
117 |
|
sinppi |
|- ( ( x / 2 ) e. CC -> ( sin ` ( ( x / 2 ) + _pi ) ) = -u ( sin ` ( x / 2 ) ) ) |
118 |
116 117
|
syl |
|- ( x e. RR -> ( sin ` ( ( x / 2 ) + _pi ) ) = -u ( sin ` ( x / 2 ) ) ) |
119 |
115 118
|
eqtrd |
|- ( x e. RR -> ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) = -u ( sin ` ( x / 2 ) ) ) |
120 |
119
|
oveq2d |
|- ( x e. RR -> ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) = ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) |
121 |
120
|
adantl |
|- ( ( N e. NN /\ x e. RR ) -> ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) = ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) |
122 |
107 121
|
oveq12d |
|- ( ( N e. NN /\ x e. RR ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) = ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) ) |
123 |
122
|
adantr |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + ( 2 x. _pi ) ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + ( 2 x. _pi ) ) / 2 ) ) ) ) = ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) ) |
124 |
116
|
sincld |
|- ( x e. RR -> ( sin ` ( x / 2 ) ) e. CC ) |
125 |
108 124
|
mulneg2d |
|- ( x e. RR -> ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) = -u ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) |
126 |
125
|
oveq2d |
|- ( x e. RR -> ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) = ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / -u ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) |
127 |
126
|
ad2antlr |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. -u ( sin ` ( x / 2 ) ) ) ) = ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / -u ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) |
128 |
72 123 127
|
3eqtrrd |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> ( -u ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / -u ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) = if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) ) |
129 |
34 53 128
|
3eqtr2rd |
|- ( ( ( N e. NN /\ x e. RR ) /\ -. ( x mod ( 2 x. _pi ) ) = 0 ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) |
130 |
32 129
|
pm2.61dan |
|- ( ( N e. NN /\ x e. RR ) -> if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) = if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) |
131 |
8
|
a1i |
|- ( x e. RR -> T e. RR ) |
132 |
16 131
|
readdcld |
|- ( x e. RR -> ( x + T ) e. RR ) |
133 |
1
|
dirkerval2 |
|- ( ( N e. NN /\ ( x + T ) e. RR ) -> ( ( D ` N ) ` ( x + T ) ) = if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) ) |
134 |
132 133
|
sylan2 |
|- ( ( N e. NN /\ x e. RR ) -> ( ( D ` N ) ` ( x + T ) ) = if ( ( ( x + T ) mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. ( x + T ) ) ) / ( ( 2 x. _pi ) x. ( sin ` ( ( x + T ) / 2 ) ) ) ) ) ) |
135 |
1
|
dirkerval2 |
|- ( ( N e. NN /\ x e. RR ) -> ( ( D ` N ) ` x ) = if ( ( x mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) / ( ( 2 x. _pi ) x. ( sin ` ( x / 2 ) ) ) ) ) ) |
136 |
130 134 135
|
3eqtr4d |
|- ( ( N e. NN /\ x e. RR ) -> ( ( D ` N ) ` ( x + T ) ) = ( ( D ` N ) ` x ) ) |