| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodsub2cncf.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodsub2cncf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodsub2cncf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fprodsub2cncf.f |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ∏ 𝑘 ∈ 𝐴 ( 𝐵 − 𝑥 ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℂ ↦ ∏ 𝑘 ∈ 𝐴 ( 𝐵 − 𝑥 ) ) ) |
| 6 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 7 |
6
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝐵 − 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐵 − 𝑥 ) ) |
| 10 |
3 9
|
sub2cncfd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ ℂ ↦ ( 𝐵 − 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 |
6
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 13 |
10 12
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ ℂ ↦ ( 𝐵 − 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 |
1 6 8 2 13
|
fprodcn |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ∏ 𝑘 ∈ 𝐴 ( 𝐵 − 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 15 |
5 14
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 |
11
|
a1i |
⊢ ( 𝜑 → ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) = ( ℂ –cn→ ℂ ) ) |
| 18 |
15 17
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |