| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcn.d |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodcn.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
fprodcn.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
fprodcn.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
fprodcn.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 6 |
|
prodeq1 |
⊢ ( 𝑦 = ∅ → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 9 |
|
prodeq1 |
⊢ ( 𝑦 = 𝑧 → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ 𝑧 𝐵 ) |
| 10 |
9
|
mpteq2dv |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 12 |
|
prodeq1 |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) |
| 13 |
12
|
mpteq2dv |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 15 |
|
prodeq1 |
⊢ ( 𝑦 = 𝐴 → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 16 |
15
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 18 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
| 19 |
18
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) |
| 20 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 1 = 1 ) |
| 21 |
20
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ 1 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) |
| 22 |
19 21
|
eqtri |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) ) |
| 24 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 26 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 27 |
3 25 26
|
cnmptc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ 1 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 28 |
23 27
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑦 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑧 ∪ { 𝑤 } ) |
| 31 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 32 |
30 31
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 33 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 34 |
33
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 35 |
29 32 34
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 36 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 37 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) |
| 38 |
1 37
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) |
| 39 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑧 |
| 41 |
40
|
nfcprod1 |
⊢ Ⅎ 𝑘 ∏ 𝑘 ∈ 𝑧 𝐵 |
| 42 |
39 41
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐽 Cn 𝐾 ) |
| 44 |
42 43
|
nfel |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 45 |
38 44
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 46 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 47 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐴 ∈ Fin ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 49 |
48 31 33
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 50 |
49
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 52 |
51 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 53 |
52
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 54 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑧 ⊆ 𝐴 ) |
| 55 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑦 ∏ 𝑘 ∈ 𝑧 𝐵 |
| 57 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 58 |
57 31
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 59 |
33
|
prodeq2sdv |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑧 𝐵 = ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 60 |
56 58 59
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 61 |
60
|
eleq1i |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 62 |
61
|
biimpi |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 64 |
45 2 46 47 53 54 55 63
|
fprodcnlem |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 65 |
36 64
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 66 |
65
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 67 |
8 11 14 17 28 66 4
|
findcard2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |