| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcn.d |
|
| 2 |
|
fprodcn.k |
|
| 3 |
|
fprodcn.j |
|
| 4 |
|
fprodcn.a |
|
| 5 |
|
fprodcn.b |
|
| 6 |
|
prodeq1 |
|
| 7 |
6
|
mpteq2dv |
|
| 8 |
7
|
eleq1d |
|
| 9 |
|
prodeq1 |
|
| 10 |
9
|
mpteq2dv |
|
| 11 |
10
|
eleq1d |
|
| 12 |
|
prodeq1 |
|
| 13 |
12
|
mpteq2dv |
|
| 14 |
13
|
eleq1d |
|
| 15 |
|
prodeq1 |
|
| 16 |
15
|
mpteq2dv |
|
| 17 |
16
|
eleq1d |
|
| 18 |
|
prod0 |
|
| 19 |
18
|
mpteq2i |
|
| 20 |
|
eqidd |
|
| 21 |
20
|
cbvmptv |
|
| 22 |
19 21
|
eqtri |
|
| 23 |
22
|
a1i |
|
| 24 |
2
|
cnfldtopon |
|
| 25 |
24
|
a1i |
|
| 26 |
|
1cnd |
|
| 27 |
3 25 26
|
cnmptc |
|
| 28 |
23 27
|
eqeltrd |
|
| 29 |
|
nfcv |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfcsb1v |
|
| 32 |
30 31
|
nfcprod |
|
| 33 |
|
csbeq1a |
|
| 34 |
33
|
prodeq2ad |
|
| 35 |
29 32 34
|
cbvmpt |
|
| 36 |
35
|
a1i |
|
| 37 |
|
nfv |
|
| 38 |
1 37
|
nfan |
|
| 39 |
|
nfcv |
|
| 40 |
|
nfcv |
|
| 41 |
40
|
nfcprod1 |
|
| 42 |
39 41
|
nfmpt |
|
| 43 |
|
nfcv |
|
| 44 |
42 43
|
nfel |
|
| 45 |
38 44
|
nfan |
|
| 46 |
3
|
ad2antrr |
|
| 47 |
4
|
ad2antrr |
|
| 48 |
|
nfcv |
|
| 49 |
48 31 33
|
cbvmpt |
|
| 50 |
49
|
eqcomi |
|
| 51 |
50
|
a1i |
|
| 52 |
51 5
|
eqeltrd |
|
| 53 |
52
|
ad4ant14 |
|
| 54 |
|
simplrl |
|
| 55 |
|
simplrr |
|
| 56 |
|
nfcv |
|
| 57 |
|
nfcv |
|
| 58 |
57 31
|
nfcprod |
|
| 59 |
33
|
prodeq2sdv |
|
| 60 |
56 58 59
|
cbvmpt |
|
| 61 |
60
|
eleq1i |
|
| 62 |
61
|
biimpi |
|
| 63 |
62
|
adantl |
|
| 64 |
45 2 46 47 53 54 55 63
|
fprodcnlem |
|
| 65 |
36 64
|
eqeltrd |
|
| 66 |
65
|
ex |
|
| 67 |
8 11 14 17 28 66 4
|
findcard2d |
|