Metamath Proof Explorer


Theorem nfcprod

Description: Bound-variable hypothesis builder for product: if x is (effectively) not free in A and B , it is not free in prod_ k e. A B . (Contributed by Scott Fenton, 1-Dec-2017)

Ref Expression
Hypotheses nfcprod.1 _xA
nfcprod.2 _xB
Assertion nfcprod _xkAB

Proof

Step Hyp Ref Expression
1 nfcprod.1 _xA
2 nfcprod.2 _xB
3 df-prod kAB=ιy|mAmnmzz0seqn×kifkAB1zseqm×kifkAB1ymff:1m1-1 ontoAy=seq1×nfn/kBm
4 nfcv _x
5 nfcv _xm
6 1 5 nfss xAm
7 nfv xz0
8 nfcv _xn
9 nfcv _x×
10 1 nfcri xkA
11 nfcv _x1
12 10 2 11 nfif _xifkAB1
13 4 12 nfmpt _xkifkAB1
14 8 9 13 nfseq _xseqn×kifkAB1
15 nfcv _x
16 nfcv _xz
17 14 15 16 nfbr xseqn×kifkAB1z
18 7 17 nfan xz0seqn×kifkAB1z
19 18 nfex xzz0seqn×kifkAB1z
20 5 19 nfrexw xnmzz0seqn×kifkAB1z
21 nfcv _xm
22 21 9 13 nfseq _xseqm×kifkAB1
23 nfcv _xy
24 22 15 23 nfbr xseqm×kifkAB1y
25 6 20 24 nf3an xAmnmzz0seqn×kifkAB1zseqm×kifkAB1y
26 4 25 nfrexw xmAmnmzz0seqn×kifkAB1zseqm×kifkAB1y
27 nfcv _x
28 nfcv _xf
29 nfcv _x1m
30 28 29 1 nff1o xf:1m1-1 ontoA
31 nfcv _xfn
32 31 2 nfcsbw _xfn/kB
33 27 32 nfmpt _xnfn/kB
34 11 9 33 nfseq _xseq1×nfn/kB
35 34 21 nffv _xseq1×nfn/kBm
36 35 nfeq2 xy=seq1×nfn/kBm
37 30 36 nfan xf:1m1-1 ontoAy=seq1×nfn/kBm
38 37 nfex xff:1m1-1 ontoAy=seq1×nfn/kBm
39 27 38 nfrexw xmff:1m1-1 ontoAy=seq1×nfn/kBm
40 26 39 nfor xmAmnmzz0seqn×kifkAB1zseqm×kifkAB1ymff:1m1-1 ontoAy=seq1×nfn/kBm
41 40 nfiotaw _xιy|mAmnmzz0seqn×kifkAB1zseqm×kifkAB1ymff:1m1-1 ontoAy=seq1×nfn/kBm
42 3 41 nfcxfr _xkAB