| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcnlem.1 |
|
| 2 |
|
fprodcnlem.k |
|
| 3 |
|
fprodcnlem.j |
|
| 4 |
|
fprodcnlem.a |
|
| 5 |
|
fprodcnlem.b |
|
| 6 |
|
fprodcnlem.z |
|
| 7 |
|
fprodcnlem.w |
|
| 8 |
|
fprodcnlem.p |
|
| 9 |
|
nfv |
|
| 10 |
1 9
|
nfan |
|
| 11 |
|
nfcsb1v |
|
| 12 |
4 6
|
ssfid |
|
| 13 |
12
|
adantr |
|
| 14 |
7
|
adantr |
|
| 15 |
14
|
eldifbd |
|
| 16 |
6
|
sselda |
|
| 17 |
16
|
adantlr |
|
| 18 |
3
|
adantr |
|
| 19 |
2
|
cnfldtopon |
|
| 20 |
19
|
a1i |
|
| 21 |
|
cnf2 |
|
| 22 |
18 20 5 21
|
syl3anc |
|
| 23 |
|
eqid |
|
| 24 |
23
|
fmpt |
|
| 25 |
22 24
|
sylibr |
|
| 26 |
25
|
adantlr |
|
| 27 |
|
simplr |
|
| 28 |
|
rspa |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
17 29
|
syldan |
|
| 31 |
|
csbeq1a |
|
| 32 |
14
|
eldifad |
|
| 33 |
|
nfv |
|
| 34 |
10 33
|
nfan |
|
| 35 |
11
|
nfel1 |
|
| 36 |
34 35
|
nfim |
|
| 37 |
|
eleq1 |
|
| 38 |
37
|
anbi2d |
|
| 39 |
31
|
eleq1d |
|
| 40 |
38 39
|
imbi12d |
|
| 41 |
36 40 29
|
vtoclg1f |
|
| 42 |
41
|
anabsi7 |
|
| 43 |
32 42
|
mpdan |
|
| 44 |
10 11 13 14 15 30 31 43
|
fprodsplitsn |
|
| 45 |
44
|
mpteq2dva |
|
| 46 |
7
|
eldifad |
|
| 47 |
1 33
|
nfan |
|
| 48 |
|
nfcv |
|
| 49 |
48 11
|
nfmpt |
|
| 50 |
49
|
nfel1 |
|
| 51 |
47 50
|
nfim |
|
| 52 |
37
|
anbi2d |
|
| 53 |
31
|
mpteq2dv |
|
| 54 |
53
|
eleq1d |
|
| 55 |
52 54
|
imbi12d |
|
| 56 |
51 55 5
|
vtoclg1f |
|
| 57 |
56
|
anabsi7 |
|
| 58 |
46 57
|
mpdan |
|
| 59 |
19
|
a1i |
|
| 60 |
2
|
mpomulcn |
|
| 61 |
60
|
a1i |
|
| 62 |
|
oveq12 |
|
| 63 |
3 8 58 59 59 61 62
|
cnmpt12 |
|
| 64 |
45 63
|
eqeltrd |
|