Metamath Proof Explorer


Theorem fraclt1

Description: The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008)

Ref Expression
Assertion fraclt1 ( 𝐴 ∈ ℝ → ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 )

Proof

Step Hyp Ref Expression
1 flltp1 ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) )
2 reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
3 1re 1 ∈ ℝ
4 ltsubadd2 ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 ↔ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
5 3 4 mp3an3 ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 ↔ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
6 2 5 mpdan ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 ↔ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
7 1 6 mpbird ( 𝐴 ∈ ℝ → ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) < 1 )