| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frcond1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frcond1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | frcond3 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 )  →  ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑘 )  ∩  ( 𝐺  NeighbVtx  𝑙 ) )  =  { 𝑥 } ) ) | 
						
							| 4 |  | eldifsn | ⊢ ( 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } )  ↔  ( 𝑙  ∈  𝑉  ∧  𝑙  ≠  𝑘 ) ) | 
						
							| 5 |  | necom | ⊢ ( 𝑙  ≠  𝑘  ↔  𝑘  ≠  𝑙 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝑙  ≠  𝑘  →  𝑘  ≠  𝑙 ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( 𝑙  ∈  𝑉  ∧  𝑙  ≠  𝑘 )  →  ( 𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 ) ) | 
						
							| 8 | 4 7 | sylbi | ⊢ ( 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } )  →  ( 𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 ) ) | 
						
							| 9 | 8 | anim2i | ⊢ ( ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) )  →  ( 𝑘  ∈  𝑉  ∧  ( 𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 )  ↔  ( 𝑘  ∈  𝑉  ∧  ( 𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 ) ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) )  →  ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  𝑉  ∧  𝑘  ≠  𝑙 ) ) | 
						
							| 12 | 3 11 | impel | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑘  ∈  𝑉  ∧  𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ) )  →  ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑘 )  ∩  ( 𝐺  NeighbVtx  𝑙 ) )  =  { 𝑥 } ) | 
						
							| 13 | 12 | ralrimivva | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑘  ∈  𝑉 ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑘 )  ∩  ( 𝐺  NeighbVtx  𝑙 ) )  =  { 𝑥 } ) |