| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
| 3 |
|
elex |
⊢ ( 𝐼 ∈ 𝑊 → 𝐼 ∈ V ) |
| 4 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ringLMod ‘ 𝑟 ) = ( ringLMod ‘ 𝑅 ) ) |
| 6 |
5
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( ringLMod ‘ 𝑟 ) } = { ( ringLMod ‘ 𝑅 ) } ) |
| 7 |
6
|
xpeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) = ( 𝑖 × { ( ringLMod ‘ 𝑅 ) } ) ) |
| 8 |
4 7
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) = ( 𝑅 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 9 |
|
xpeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 × { ( ringLMod ‘ 𝑅 ) } ) = ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑅 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 11 |
|
df-frlm |
⊢ freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) ) |
| 12 |
|
ovex |
⊢ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ∈ V |
| 13 |
8 10 11 12
|
ovmpo |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 14 |
2 3 13
|
syl2an |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 15 |
1 14
|
eqtrid |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |