| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsummulc1f.ph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fsummulclf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fsummulclf.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
fsummulclf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 8 |
5 6 7
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 9 |
8
|
oveq1i |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
| 12 |
1 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
| 13 |
7
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 14 |
12 13
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 15 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 17 |
5
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 18 |
16 17
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 19 |
14 18 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 20 |
2 3 19
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) ) |
| 21 |
|
eqcom |
⊢ ( 𝑘 = 𝑗 ↔ 𝑗 = 𝑘 ) |
| 22 |
21
|
imbi1i |
⊢ ( ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 23 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) |
| 24 |
23
|
imbi2i |
⊢ ( ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) ) |
| 25 |
22 24
|
bitri |
⊢ ( ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) ) |
| 26 |
5 25
|
mpbi |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
| 30 |
7 28 29
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐵 · 𝐶 ) |
| 32 |
27 30 31
|
cbvsum |
⊢ Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |
| 34 |
10 20 33
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |