Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc1f.ph |
|
2 |
|
fsummulclf.a |
|
3 |
|
fsummulclf.c |
|
4 |
|
fsummulclf.b |
|
5 |
|
csbeq1a |
|
6 |
|
nfcv |
|
7 |
|
nfcv |
|
8 |
|
nfcv |
|
9 |
|
nfcsb1v |
|
10 |
5 6 7 8 9
|
cbvsum |
|
11 |
10
|
oveq1i |
|
12 |
11
|
a1i |
|
13 |
|
nfv |
|
14 |
1 13
|
nfan |
|
15 |
9
|
nfel1 |
|
16 |
14 15
|
nfim |
|
17 |
|
eleq1w |
|
18 |
17
|
anbi2d |
|
19 |
5
|
eleq1d |
|
20 |
18 19
|
imbi12d |
|
21 |
16 20 4
|
chvarfv |
|
22 |
2 3 21
|
fsummulc1 |
|
23 |
|
eqcom |
|
24 |
23
|
imbi1i |
|
25 |
|
eqcom |
|
26 |
25
|
imbi2i |
|
27 |
24 26
|
bitri |
|
28 |
5 27
|
mpbi |
|
29 |
28
|
oveq1d |
|
30 |
|
nfcv |
|
31 |
|
nfcv |
|
32 |
9 30 31
|
nfov |
|
33 |
|
nfcv |
|
34 |
29 7 6 32 33
|
cbvsum |
|
35 |
34
|
a1i |
|
36 |
12 22 35
|
3eqtrd |
|