| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumnncl.an0 |  | 
						
							| 2 |  | fsumnncl.afi |  | 
						
							| 3 |  | fsumnncl.b |  | 
						
							| 4 | 3 | nnnn0d |  | 
						
							| 5 | 2 4 | fsumnn0cl |  | 
						
							| 6 |  | n0 |  | 
						
							| 7 | 1 6 | sylib |  | 
						
							| 8 |  | 0red |  | 
						
							| 9 |  | nfv |  | 
						
							| 10 |  | nfcsb1v |  | 
						
							| 11 | 10 | nfel1 |  | 
						
							| 12 | 9 11 | nfim |  | 
						
							| 13 |  | eleq1w |  | 
						
							| 14 | 13 | anbi2d |  | 
						
							| 15 |  | csbeq1a |  | 
						
							| 16 | 15 | eleq1d |  | 
						
							| 17 | 14 16 | imbi12d |  | 
						
							| 18 | 12 17 3 | chvarfv |  | 
						
							| 19 | 18 | nnred |  | 
						
							| 20 | 8 19 | readdcld |  | 
						
							| 21 |  | diffi |  | 
						
							| 22 | 2 21 | syl |  | 
						
							| 23 |  | eldifi |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 | 24 4 | syldan |  | 
						
							| 26 | 22 25 | fsumnn0cl |  | 
						
							| 27 | 26 | nn0red |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 19 | readdcld |  | 
						
							| 30 | 18 | nnrpd |  | 
						
							| 31 | 8 30 | ltaddrpd |  | 
						
							| 32 | 26 | nn0ge0d |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 8 28 19 33 | leadd1dd |  | 
						
							| 35 | 8 20 29 31 34 | ltletrd |  | 
						
							| 36 |  | difsnid |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 37 | eqcomd |  | 
						
							| 39 | 38 | sumeq1d |  | 
						
							| 40 | 22 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 |  | neldifsnd |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 43 24 3 | syl2anc |  | 
						
							| 45 | 44 | nncnd |  | 
						
							| 46 | 45 | adantlr |  | 
						
							| 47 |  | nnsscn |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 48 18 | sseldd |  | 
						
							| 50 | 9 10 40 41 42 46 15 49 | fsumsplitsn |  | 
						
							| 51 | 39 50 | eqtr2d |  | 
						
							| 52 | 35 51 | breqtrd |  | 
						
							| 53 | 52 | ex |  | 
						
							| 54 | 53 | exlimdv |  | 
						
							| 55 | 7 54 | mpd |  | 
						
							| 56 | 5 55 | jca |  | 
						
							| 57 |  | elnnnn0b |  | 
						
							| 58 | 56 57 | sylibr |  |