| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsummulc1f.ph |
|- F/ k ph |
| 2 |
|
fsummulclf.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fsummulclf.c |
|- ( ph -> C e. CC ) |
| 4 |
|
fsummulclf.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 5 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
| 6 |
|
nfcv |
|- F/_ j B |
| 7 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
| 8 |
5 6 7
|
cbvsum |
|- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
| 9 |
8
|
oveq1i |
|- ( sum_ k e. A B x. C ) = ( sum_ j e. A [_ j / k ]_ B x. C ) |
| 10 |
9
|
a1i |
|- ( ph -> ( sum_ k e. A B x. C ) = ( sum_ j e. A [_ j / k ]_ B x. C ) ) |
| 11 |
|
nfv |
|- F/ k j e. A |
| 12 |
1 11
|
nfan |
|- F/ k ( ph /\ j e. A ) |
| 13 |
7
|
nfel1 |
|- F/ k [_ j / k ]_ B e. CC |
| 14 |
12 13
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 15 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
| 16 |
15
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
| 17 |
5
|
eleq1d |
|- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
| 18 |
16 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) ) ) |
| 19 |
14 18 4
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 20 |
2 3 19
|
fsummulc1 |
|- ( ph -> ( sum_ j e. A [_ j / k ]_ B x. C ) = sum_ j e. A ( [_ j / k ]_ B x. C ) ) |
| 21 |
|
eqcom |
|- ( k = j <-> j = k ) |
| 22 |
21
|
imbi1i |
|- ( ( k = j -> B = [_ j / k ]_ B ) <-> ( j = k -> B = [_ j / k ]_ B ) ) |
| 23 |
|
eqcom |
|- ( B = [_ j / k ]_ B <-> [_ j / k ]_ B = B ) |
| 24 |
23
|
imbi2i |
|- ( ( j = k -> B = [_ j / k ]_ B ) <-> ( j = k -> [_ j / k ]_ B = B ) ) |
| 25 |
22 24
|
bitri |
|- ( ( k = j -> B = [_ j / k ]_ B ) <-> ( j = k -> [_ j / k ]_ B = B ) ) |
| 26 |
5 25
|
mpbi |
|- ( j = k -> [_ j / k ]_ B = B ) |
| 27 |
26
|
oveq1d |
|- ( j = k -> ( [_ j / k ]_ B x. C ) = ( B x. C ) ) |
| 28 |
|
nfcv |
|- F/_ k x. |
| 29 |
|
nfcv |
|- F/_ k C |
| 30 |
7 28 29
|
nfov |
|- F/_ k ( [_ j / k ]_ B x. C ) |
| 31 |
|
nfcv |
|- F/_ j ( B x. C ) |
| 32 |
27 30 31
|
cbvsum |
|- sum_ j e. A ( [_ j / k ]_ B x. C ) = sum_ k e. A ( B x. C ) |
| 33 |
32
|
a1i |
|- ( ph -> sum_ j e. A ( [_ j / k ]_ B x. C ) = sum_ k e. A ( B x. C ) ) |
| 34 |
10 20 33
|
3eqtrd |
|- ( ph -> ( sum_ k e. A B x. C ) = sum_ k e. A ( B x. C ) ) |