Metamath Proof Explorer


Theorem funcf2lem2

Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypothesis funcf2lem2.b 𝐵 = ( 𝐸𝐶 )
Assertion funcf2lem2 ( 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) ↔ ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 funcf2lem2.b 𝐵 = ( 𝐸𝐶 )
2 funcf2lem ( 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
3 3simpc ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
4 2 3 sylbi ( 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
5 fnov ( 𝐺 Fn ( 𝐵 × 𝐵 ) ↔ 𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) )
6 5 biimpi ( 𝐺 Fn ( 𝐵 × 𝐵 ) → 𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) )
7 1 fvexi 𝐵 ∈ V
8 7 7 mpoex ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) ∈ V
9 6 8 eqeltrdi ( 𝐺 Fn ( 𝐵 × 𝐵 ) → 𝐺 ∈ V )
10 9 adantr ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) → 𝐺 ∈ V )
11 simpl ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) )
12 simpr ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) )
13 10 11 12 2 syl3anbrc ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) → 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) )
14 4 13 impbii ( 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) ↔ ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )