Step |
Hyp |
Ref |
Expression |
1 |
|
funcf2lem2.b |
⊢ 𝐵 = ( 𝐸 ‘ 𝐶 ) |
2 |
|
funcf2lem |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
3 |
|
3simpc |
⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
4 |
2 3
|
sylbi |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
5 |
|
fnov |
⊢ ( 𝐺 Fn ( 𝐵 × 𝐵 ) ↔ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
6 |
5
|
biimpi |
⊢ ( 𝐺 Fn ( 𝐵 × 𝐵 ) → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) ) |
7 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
8 |
7 7
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐺 𝑦 ) ) ∈ V |
9 |
6 8
|
eqeltrdi |
⊢ ( 𝐺 Fn ( 𝐵 × 𝐵 ) → 𝐺 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) → 𝐺 ∈ V ) |
11 |
|
simpl |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
12 |
|
simpr |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
10 11 12 2
|
syl3anbrc |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) → 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
14 |
4 13
|
impbii |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |