Metamath Proof Explorer


Theorem funciso

Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of Adamek p. 32. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funciso.b 𝐵 = ( Base ‘ 𝐷 )
funciso.s 𝐼 = ( Iso ‘ 𝐷 )
funciso.t 𝐽 = ( Iso ‘ 𝐸 )
funciso.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
funciso.x ( 𝜑𝑋𝐵 )
funciso.y ( 𝜑𝑌𝐵 )
funciso.m ( 𝜑𝑀 ∈ ( 𝑋 𝐼 𝑌 ) )
Assertion funciso ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 funciso.b 𝐵 = ( Base ‘ 𝐷 )
2 funciso.s 𝐼 = ( Iso ‘ 𝐷 )
3 funciso.t 𝐽 = ( Iso ‘ 𝐸 )
4 funciso.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
5 funciso.x ( 𝜑𝑋𝐵 )
6 funciso.y ( 𝜑𝑌𝐵 )
7 funciso.m ( 𝜑𝑀 ∈ ( 𝑋 𝐼 𝑌 ) )
8 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
9 eqid ( Inv ‘ 𝐸 ) = ( Inv ‘ 𝐸 )
10 df-br ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
11 4 10 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
12 funcrcl ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
13 11 12 syl ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
14 13 simprd ( 𝜑𝐸 ∈ Cat )
15 1 8 4 funcf1 ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) )
16 15 5 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐸 ) )
17 15 6 ffvelrnd ( 𝜑 → ( 𝐹𝑌 ) ∈ ( Base ‘ 𝐸 ) )
18 eqid ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 )
19 13 simpld ( 𝜑𝐷 ∈ Cat )
20 1 2 18 19 5 6 7 invisoinvr ( 𝜑𝑀 ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) )
21 1 18 9 4 5 6 20 funcinv ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹𝑋 ) ( Inv ‘ 𝐸 ) ( 𝐹𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) )
22 8 9 14 16 17 3 21 inviso1 ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )