| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funciso.b | ⊢ 𝐵  =  ( Base ‘ 𝐷 ) | 
						
							| 2 |  | funciso.s | ⊢ 𝐼  =  ( Iso ‘ 𝐷 ) | 
						
							| 3 |  | funciso.t | ⊢ 𝐽  =  ( Iso ‘ 𝐸 ) | 
						
							| 4 |  | funciso.f | ⊢ ( 𝜑  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 ) | 
						
							| 5 |  | funciso.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | funciso.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | funciso.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 ) | 
						
							| 9 |  | eqid | ⊢ ( Inv ‘ 𝐸 )  =  ( Inv ‘ 𝐸 ) | 
						
							| 10 |  | df-br | ⊢ ( 𝐹 ( 𝐷  Func  𝐸 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 ) ) | 
						
							| 11 | 4 10 | sylib | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 ) ) | 
						
							| 12 |  | funcrcl | ⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 )  →  ( 𝐷  ∈  Cat  ∧  𝐸  ∈  Cat ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∈  Cat  ∧  𝐸  ∈  Cat ) ) | 
						
							| 14 | 13 | simprd | ⊢ ( 𝜑  →  𝐸  ∈  Cat ) | 
						
							| 15 | 1 8 4 | funcf1 | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) | 
						
							| 16 | 15 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 17 | 15 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Inv ‘ 𝐷 )  =  ( Inv ‘ 𝐷 ) | 
						
							| 19 | 13 | simpld | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 20 | 1 2 18 19 5 6 7 | invisoinvr | ⊢ ( 𝜑  →  𝑀 ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) | 
						
							| 21 | 1 18 9 4 5 6 20 | funcinv | ⊢ ( 𝜑  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) ) | 
						
							| 22 | 8 9 14 16 17 3 21 | inviso1 | ⊢ ( 𝜑  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |