Metamath Proof Explorer


Theorem funciso

Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of Adamek p. 32. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funciso.b B=BaseD
funciso.s I=IsoD
funciso.t J=IsoE
funciso.f φFDFuncEG
funciso.x φXB
funciso.y φYB
funciso.m φMXIY
Assertion funciso φXGYMFXJFY

Proof

Step Hyp Ref Expression
1 funciso.b B=BaseD
2 funciso.s I=IsoD
3 funciso.t J=IsoE
4 funciso.f φFDFuncEG
5 funciso.x φXB
6 funciso.y φYB
7 funciso.m φMXIY
8 eqid BaseE=BaseE
9 eqid InvE=InvE
10 df-br FDFuncEGFGDFuncE
11 4 10 sylib φFGDFuncE
12 funcrcl FGDFuncEDCatECat
13 11 12 syl φDCatECat
14 13 simprd φECat
15 1 8 4 funcf1 φF:BBaseE
16 15 5 ffvelcdmd φFXBaseE
17 15 6 ffvelcdmd φFYBaseE
18 eqid InvD=InvD
19 13 simpld φDCat
20 1 2 18 19 5 6 7 invisoinvr φMXInvDYXInvDYM
21 1 18 9 4 5 6 20 funcinv φXGYMFXInvEFYYGXXInvDYM
22 8 9 14 16 17 3 21 inviso1 φXGYMFXJFY