Metamath Proof Explorer


Theorem funcinv

Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funcinv.b B=BaseD
funcinv.s I=InvD
funcinv.t J=InvE
funcinv.f φFDFuncEG
funcinv.x φXB
funcinv.y φYB
funcinv.m φMXIYN
Assertion funcinv φXGYMFXJFYYGXN

Proof

Step Hyp Ref Expression
1 funcinv.b B=BaseD
2 funcinv.s I=InvD
3 funcinv.t J=InvE
4 funcinv.f φFDFuncEG
5 funcinv.x φXB
6 funcinv.y φYB
7 funcinv.m φMXIYN
8 eqid SectD=SectD
9 eqid SectE=SectE
10 df-br FDFuncEGFGDFuncE
11 4 10 sylib φFGDFuncE
12 funcrcl FGDFuncEDCatECat
13 11 12 syl φDCatECat
14 13 simpld φDCat
15 1 2 14 5 6 8 isinv φMXIYNMXSectDYNNYSectDXM
16 7 15 mpbid φMXSectDYNNYSectDXM
17 16 simpld φMXSectDYN
18 1 8 9 4 5 6 17 funcsect φXGYMFXSectEFYYGXN
19 16 simprd φNYSectDXM
20 1 8 9 4 6 5 19 funcsect φYGXNFYSectEFXXGYM
21 eqid BaseE=BaseE
22 13 simprd φECat
23 1 21 4 funcf1 φF:BBaseE
24 23 5 ffvelcdmd φFXBaseE
25 23 6 ffvelcdmd φFYBaseE
26 21 3 22 24 25 9 isinv φXGYMFXJFYYGXNXGYMFXSectEFYYGXNYGXNFYSectEFXXGYM
27 18 20 26 mpbir2and φXGYMFXJFYYGXN