Metamath Proof Explorer


Theorem funcsect

Description: The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcsect.b B=BaseD
funcsect.s S=SectD
funcsect.t T=SectE
funcsect.f φFDFuncEG
funcsect.x φXB
funcsect.y φYB
funcsect.m φMXSYN
Assertion funcsect φXGYMFXTFYYGXN

Proof

Step Hyp Ref Expression
1 funcsect.b B=BaseD
2 funcsect.s S=SectD
3 funcsect.t T=SectE
4 funcsect.f φFDFuncEG
5 funcsect.x φXB
6 funcsect.y φYB
7 funcsect.m φMXSYN
8 eqid HomD=HomD
9 eqid compD=compD
10 eqid IdD=IdD
11 df-br FDFuncEGFGDFuncE
12 4 11 sylib φFGDFuncE
13 funcrcl FGDFuncEDCatECat
14 12 13 syl φDCatECat
15 14 simpld φDCat
16 1 8 9 10 2 15 5 6 issect φMXSYNMXHomDYNYHomDXNXYcompDXM=IdDX
17 7 16 mpbid φMXHomDYNYHomDXNXYcompDXM=IdDX
18 17 simp3d φNXYcompDXM=IdDX
19 18 fveq2d φXGXNXYcompDXM=XGXIdDX
20 eqid compE=compE
21 17 simp1d φMXHomDY
22 17 simp2d φNYHomDX
23 1 8 9 20 4 5 6 5 21 22 funcco φXGXNXYcompDXM=YGXNFXFYcompEFXXGYM
24 eqid IdE=IdE
25 1 10 24 4 5 funcid φXGXIdDX=IdEFX
26 19 23 25 3eqtr3d φYGXNFXFYcompEFXXGYM=IdEFX
27 eqid BaseE=BaseE
28 eqid HomE=HomE
29 14 simprd φECat
30 1 27 4 funcf1 φF:BBaseE
31 30 5 ffvelcdmd φFXBaseE
32 30 6 ffvelcdmd φFYBaseE
33 1 8 28 4 5 6 funcf2 φXGY:XHomDYFXHomEFY
34 33 21 ffvelcdmd φXGYMFXHomEFY
35 1 8 28 4 6 5 funcf2 φYGX:YHomDXFYHomEFX
36 35 22 ffvelcdmd φYGXNFYHomEFX
37 27 28 20 24 3 29 31 32 34 36 issect2 φXGYMFXTFYYGXNYGXNFXFYcompEFXXGYM=IdEFX
38 26 37 mpbird φXGYMFXTFYYGXN