Metamath Proof Explorer


Theorem funciso

Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of Adamek p. 32. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses funciso.b
|- B = ( Base ` D )
funciso.s
|- I = ( Iso ` D )
funciso.t
|- J = ( Iso ` E )
funciso.f
|- ( ph -> F ( D Func E ) G )
funciso.x
|- ( ph -> X e. B )
funciso.y
|- ( ph -> Y e. B )
funciso.m
|- ( ph -> M e. ( X I Y ) )
Assertion funciso
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 funciso.b
 |-  B = ( Base ` D )
2 funciso.s
 |-  I = ( Iso ` D )
3 funciso.t
 |-  J = ( Iso ` E )
4 funciso.f
 |-  ( ph -> F ( D Func E ) G )
5 funciso.x
 |-  ( ph -> X e. B )
6 funciso.y
 |-  ( ph -> Y e. B )
7 funciso.m
 |-  ( ph -> M e. ( X I Y ) )
8 eqid
 |-  ( Base ` E ) = ( Base ` E )
9 eqid
 |-  ( Inv ` E ) = ( Inv ` E )
10 df-br
 |-  ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) )
11 4 10 sylib
 |-  ( ph -> <. F , G >. e. ( D Func E ) )
12 funcrcl
 |-  ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) )
13 11 12 syl
 |-  ( ph -> ( D e. Cat /\ E e. Cat ) )
14 13 simprd
 |-  ( ph -> E e. Cat )
15 1 8 4 funcf1
 |-  ( ph -> F : B --> ( Base ` E ) )
16 15 5 ffvelrnd
 |-  ( ph -> ( F ` X ) e. ( Base ` E ) )
17 15 6 ffvelrnd
 |-  ( ph -> ( F ` Y ) e. ( Base ` E ) )
18 eqid
 |-  ( Inv ` D ) = ( Inv ` D )
19 13 simpld
 |-  ( ph -> D e. Cat )
20 1 2 18 19 5 6 7 invisoinvr
 |-  ( ph -> M ( X ( Inv ` D ) Y ) ( ( X ( Inv ` D ) Y ) ` M ) )
21 1 18 9 4 5 6 20 funcinv
 |-  ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Inv ` E ) ( F ` Y ) ) ( ( Y G X ) ` ( ( X ( Inv ` D ) Y ) ` M ) ) )
22 8 9 14 16 17 3 21 inviso1
 |-  ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) )