| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funciso.b |
|- B = ( Base ` D ) |
| 2 |
|
funciso.s |
|- I = ( Iso ` D ) |
| 3 |
|
funciso.t |
|- J = ( Iso ` E ) |
| 4 |
|
funciso.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
funciso.x |
|- ( ph -> X e. B ) |
| 6 |
|
funciso.y |
|- ( ph -> Y e. B ) |
| 7 |
|
funciso.m |
|- ( ph -> M e. ( X I Y ) ) |
| 8 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 9 |
|
eqid |
|- ( Inv ` E ) = ( Inv ` E ) |
| 10 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
| 11 |
4 10
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 14 |
13
|
simprd |
|- ( ph -> E e. Cat ) |
| 15 |
1 8 4
|
funcf1 |
|- ( ph -> F : B --> ( Base ` E ) ) |
| 16 |
15 5
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
| 17 |
15 6
|
ffvelcdmd |
|- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
| 18 |
|
eqid |
|- ( Inv ` D ) = ( Inv ` D ) |
| 19 |
13
|
simpld |
|- ( ph -> D e. Cat ) |
| 20 |
1 2 18 19 5 6 7
|
invisoinvr |
|- ( ph -> M ( X ( Inv ` D ) Y ) ( ( X ( Inv ` D ) Y ) ` M ) ) |
| 21 |
1 18 9 4 5 6 20
|
funcinv |
|- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Inv ` E ) ( F ` Y ) ) ( ( Y G X ) ` ( ( X ( Inv ` D ) Y ) ` M ) ) ) |
| 22 |
8 9 14 16 17 3 21
|
inviso1 |
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |