| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funciso.b |  |-  B = ( Base ` D ) | 
						
							| 2 |  | funciso.s |  |-  I = ( Iso ` D ) | 
						
							| 3 |  | funciso.t |  |-  J = ( Iso ` E ) | 
						
							| 4 |  | funciso.f |  |-  ( ph -> F ( D Func E ) G ) | 
						
							| 5 |  | funciso.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | funciso.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | funciso.m |  |-  ( ph -> M e. ( X I Y ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` E ) = ( Base ` E ) | 
						
							| 9 |  | eqid |  |-  ( Inv ` E ) = ( Inv ` E ) | 
						
							| 10 |  | df-br |  |-  ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) | 
						
							| 11 | 4 10 | sylib |  |-  ( ph -> <. F , G >. e. ( D Func E ) ) | 
						
							| 12 |  | funcrcl |  |-  ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( D e. Cat /\ E e. Cat ) ) | 
						
							| 14 | 13 | simprd |  |-  ( ph -> E e. Cat ) | 
						
							| 15 | 1 8 4 | funcf1 |  |-  ( ph -> F : B --> ( Base ` E ) ) | 
						
							| 16 | 15 5 | ffvelcdmd |  |-  ( ph -> ( F ` X ) e. ( Base ` E ) ) | 
						
							| 17 | 15 6 | ffvelcdmd |  |-  ( ph -> ( F ` Y ) e. ( Base ` E ) ) | 
						
							| 18 |  | eqid |  |-  ( Inv ` D ) = ( Inv ` D ) | 
						
							| 19 | 13 | simpld |  |-  ( ph -> D e. Cat ) | 
						
							| 20 | 1 2 18 19 5 6 7 | invisoinvr |  |-  ( ph -> M ( X ( Inv ` D ) Y ) ( ( X ( Inv ` D ) Y ) ` M ) ) | 
						
							| 21 | 1 18 9 4 5 6 20 | funcinv |  |-  ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Inv ` E ) ( F ` Y ) ) ( ( Y G X ) ` ( ( X ( Inv ` D ) Y ) ` M ) ) ) | 
						
							| 22 | 8 9 14 16 17 3 21 | inviso1 |  |-  ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |