Metamath Proof Explorer


Theorem funopafvb

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funopafvb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 fnopafvb ( ( 𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )
3 1 2 sylanb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )