Metamath Proof Explorer


Theorem funopafvb

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funopafvb Fun F A dom F F ''' A = B A B F

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnopafvb F Fn dom F A dom F F ''' A = B A B F
3 1 2 sylanb Fun F A dom F F ''' A = B A B F