| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fusgrn0degnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
n0 |
⊢ ( 𝑉 ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ 𝑉 ) |
| 3 |
1
|
vtxdgfusgr |
⊢ ( 𝐺 ∈ FinUSGraph → ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑢 = 𝑘 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑢 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
| 6 |
5
|
rspcv |
⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
| 7 |
|
risset |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 8 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ) ) |
| 9 |
|
eqcom |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 10 |
8 9
|
bitrdi |
⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑣 = 𝑘 → ( ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 |
11
|
rspcev |
⊢ ( ( 𝑘 ∈ 𝑉 ∧ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |
| 13 |
12
|
expcom |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 14 |
7 13
|
sylbi |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 15 |
14
|
com12 |
⊢ ( 𝑘 ∈ 𝑉 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 16 |
6 15
|
syld |
⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 17 |
3 16
|
syl5 |
⊢ ( 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 18 |
17
|
exlimiv |
⊢ ( ∃ 𝑘 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 19 |
2 18
|
sylbi |
⊢ ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 20 |
19
|
impcom |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |