| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1f |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ) |
| 2 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 4 |
|
ffvelcdm |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) |
| 5 |
1 3 4
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) |
| 6 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 8 |
|
ffvelcdm |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) |
| 9 |
1 7 8
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) |
| 10 |
|
elpri |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ) |
| 11 |
|
elpri |
⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) |
| 12 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 13 |
3 7
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
| 14 |
|
f1veqaeq |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 15 |
13 14
|
sylan2 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 16 |
12 15
|
syl5 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) |
| 17 |
16
|
ex |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) ) |
| 18 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 19 |
18
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 21 |
20
|
a1i |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 22 |
17 21
|
syldd |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 23 |
22
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 24 |
|
olc |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |
| 25 |
24
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 26 |
|
orc |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |
| 27 |
26
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 28 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 29 |
28 15
|
syl5 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) |
| 30 |
29
|
ex |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) ) |
| 31 |
30 21
|
syldd |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 32 |
31
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 33 |
23 25 27 32
|
ccased |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ∧ ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 34 |
10 11 33
|
syl2ani |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ∧ ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 35 |
5 9 34
|
mp2and |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |