| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzsuc | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							difeq1d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑁  +  1 ) } )  =  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 3 | 
							
								
							 | 
							uncom | 
							⊢ ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							ssun2 | 
							⊢ { ( 𝑁  +  1 ) }  ⊆  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  | 
						
						
							| 5 | 
							
								
							 | 
							incom | 
							⊢ ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  | 
						
						
							| 6 | 
							
								
							 | 
							fzp1disj | 
							⊢ ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqtri | 
							⊢ ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							uneqdifeq | 
							⊢ ( ( { ( 𝑁  +  1 ) }  ⊆  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∧  ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ )  →  ( ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↔  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) ) )  | 
						
						
							| 10 | 
							
								4 8 9
							 | 
							sylancr | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↔  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							mpbii | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqtr2d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑁  +  1 ) } ) )  |